综述与专论

碳化硅纳米纤维表面修饰碳相功能复合材料的制备及应用研究进展

展开
  • 1.北京化工大学,北京 100029;
    2.北京橡胶工业研究设计院有限公司,北京 100143;
    3.清华大学机械工程系,北京 100084;
    4.中国科学院广州能源研究所,广州 510640
詹瑾(1984-),女,博士,讲师,研究方向为工业产品设计,E-mail:2021500122@buct.edu.cn。
张政和(1993-),男,助理研究员,研究方向为高性能碳材料,E-mail:qhzhangzhh@mail.tsinghua.edu.cn。

收稿日期: 2023-09-22

  修回日期: 2024-06-02

  网络出版日期: 2024-11-19

Preparation and application progress of SiC nanofiber modified on surface of carbon materials

Expand
  • 1. Beijing University of Chemical Technology, Beijing 100029;
    2. Beijing Research & Design Institute of Rubber Industry Co., Ltd., Beijing 100143;
    3. Department of Mechanical Engineering, Tsinghua University, Beijing 100084;
    4. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou 510640

Received date: 2023-09-22

  Revised date: 2024-06-02

  Online published: 2024-11-19

摘要

碳化硅纳米纤维具有优异的力学性能与热物理性能,其表面修饰碳材料制备功能复合材料可具备高温抗氧化及热稳定性,在航空航天等尖端战略领域已取得系列创新进展。聚焦于碳化硅纳米纤维表面修饰碳相功能复合材料的制备方法和功能特性,介绍了原位生长和静电纺丝制备方法,详细介绍了该复合材料在增韧补强、高温抗氧化的热端防护、能源环境及电磁屏蔽等方面应用的前沿进展。指出碳化硅纳米纤维的生长机理可从分子层面深入分析,实现材料高性能化的有效控制,降低制备成本和能耗,面向大规模工程化应用。

本文引用格式

詹瑾, 陈玥晗, 王红, 张政和, 左夏华 . 碳化硅纳米纤维表面修饰碳相功能复合材料的制备及应用研究进展[J]. 化工新型材料, 2024 , 52(11) : 20 -25 . DOI: 10.19817/j.cnki.issn1006-3536.2024.11.036

Abstract

SiC nanofiber (SiCnf) possesses excellent mechanical property and thermophysical characteristic.The surface modification with SiCnf can improve the high-temperature anti-oxidation and thermal stability of carbon materials,and significant innovative advancements have been achieved in advanced strategic fields such as aerospace.Herein,this paper focused on the preparation method and functional characteristics of SiCnf modified carbon materials.Moreover,the in-situ growth and electrospinning methods were introduced.The cutting-edge progress in the application of this functional materials in toughening and strengthening,thermal protection against high-temperature oxidation,energy and environment,and electromagnetic shielding was described in detail.It was pointed out that the growth mechanism of SiCnf could be analyzed from the molecular level to achieve effective control of the properties of the materials and decrease the fabrication cost and energy consumption,paving the way for large-scale engineering application.

参考文献

[1] 王富强,闫联生,郝志彪,等.用催化化学气相沉积工艺在C/C-SiC复合材料表面原位制备SiC晶须[J].机械工程材料,2011,35(10):98-102.
[2] Wang Hui,Li Hejun,Liu Xuesong,et al.Effects of SiC nanowire decorated with carbon nanosheet on mechanical,heat-dissipation and anti-ablation properties of carbon/carbon composites[J].Ceramics International,2019,45(2):2521-2529.
[3] Shen Zhixun,Ge Min,Chen Mingwei,et al.Oxidation resistance and high temperature thermal insulation of a polymeric precursor derived BN/SiC ceramics foam[J].Journal of Inorganic Materials,2013,27(12):1306-1312.
[4] Yu B,Wang L.Online accurate measurement of steady-thermal resistance of SiC MOSFETs for DC solid-state power controller[J].Ieee Transactions on Power Electronics,2021,36(5):5006-5021.
[5] Chen Jianjun,Ding Lijuan,Xin Lipeng,et al.Thermochemistry and growth mechanism of SiC nanowires[J].Journal of Solid State Chemistry,2017,253:282-286.
[6] Wang D,Xue C,Bai H,et al.Silicon carbide nanowires grown on graphene sheets[J].Ceramics International,2015,41(4):5473-5477.
[7] Zhang Y F,Han X D,Zheng K,et al.Direct observation of super-plasticity of beta-SiC nanowires at low temperature[J].Advanced Functional Materials,2007,17(17):3435-3440.
[8] Lewis B.The growth of crystals of low supersaturation:Ⅰ.theory[J].Journal of Crystal Growth,1974,21(1):29-39.
[9] Dai J X,Sha J J,Zu Y F,et al.Synthesis and growth mechanism of SiC nanofibres on carbon fabrics[J].Crystengcomm,2017,19(9):1279-1285.
[10] Li X P,Li Z Q,Que L K,et al.Electromagnetic wave absorption performance of graphene/SiC nanowires based on graphene oxide[J].Journal of Alloys and Compounds,2020,835:155172.
[11] Zhou Le,Fu Yewei,Yin Tao,et al.Building the silicon carbide nanowire network on the surface of carbon fibers:enhanced interfacial adhesion and high-performance wear resistance[J].Ceramics International,2019,45(17):22571-22577.
[12] Xue J J,Wu T,Dai Y Q,et al.Electrospinning and electrospun nanofibers:methods,materials,and applications[J].Chemical Reviews,2019,119(8):5298-5415.
[13] Wang P,Cheng L F,Zhang Y N,et al.Synthesis of SiC nanofibers with superior electromagnetic wave absorption performance by electrospinning[J].Journal of Alloys and Compounds,2017,716:306-320.
[14] 郝婧,曹雪媛,潘凯.碳化硅纳米纤维的制备及电磁波吸收性能[J].高分子材料科学与工程,2020,36(2):127-132.
[15] 刘东静,王韶铭,杨平.石墨烯/碳化硅异质界面热学特性的分子动力学模拟[J].物理学报,2021,70(18):283-292.
[16] 苑泽伟,唐美玲,郎玲琪,等.使用反应分子动力学模拟碳化硅的原子去除机理[J].沈阳工业大学学报,2021,43(1):42-47.
[17] 吴悠,邹斌,王俊成,等.SiC模具高温模压石英玻璃物相接触角的分子动力学模拟[J].硅酸盐通报,2020,39(3):923-931.
[18] Jacobson N S,Roth D J,Rauser R W,et al.Oxidation through coating cracks of SiC-protected carbon/carbon[J].Surface & Coatings Technology,2008,203(3-4):372-383.
[19] Chu Y H,Fu Q G,Li H J,et al.SiC coating toughened by SiC nanowires to protect C/C composites against oxidation[J].Ceramics International,2012,38(1):189-194.
[20] Shen Qingliang,Li Hejun,Lin Hongjiao,et al.Simultaneously improving the mechanical strength and electromagnetic interference shielding of carbon/carbon composites by electrophoretic deposition of SiC nanowires[J].Journal of Materials Chemistry C,2018,6(22):5888-5899.
[21] Qiang X F,Li H J,Zhang Y L,et al.Synthesis and toughening effect of SiC nanowires wrapped by carbon nanosheet on C/C composites[J].Journal of Alloys and Compounds,2016,676:245-250.
[22] Prakash Jyoti,Venugopalan Ramani,Paul Bhaskar,et al.Study of thermal degradation behavior of dense and nanostructured silicon carbide coated carbon fibers in oxidative environments[J].Corrosion Science,2013,67:142-151.
[23] Dai J X,Sha J J,Shao J Q,et al.In-situ growth of SiC nanostructures and their influence on anti-oxidation capability of C/SiC composites[J].Corrosion Science,2017,124:71-79.
[24] Khongwong W,Yoshida K,Yano T.Simple approach to fabricate SiC-SiO2 composite nanowires and their oxidation resistance[J].Materials Science and Engineering B-Advanced Functional Solid-State Materials,2010,173(1-3):117-121.
[25] Pourasad J,Ehsani N.In-situ synthesis of SiC nanofibers for improving the oxidation resistance of graphite[J].Ceramics International,2016,42(13):14730-14737.
[26] Ding Jun,Zhu Hongxi,Li Guangqiang,et al.Growth of SiC nanowires on wooden template surface using molten salt media[J].Applied Surface Science,2014,320:620-626.
[27] Wong Eric W,Sheehan Paul E,Lieber Charles M.Nanobeam mechanics:elasticity,strength,and toughness of nanorods and nonotubes[J].Science,1997,277(5334):1971.
[28] Chen S L,Ying P Z,Wang L,et al.Highly flexible and robust N-doped SiC nanoneedle field emitters[J].Npg Asia Materials,2015,7:e157.
[29] Chen S L,Shang M H,Gao F M,et al.Extremely stable current emission of P-doped SiC flexible field emitters[J].Advanced Science,2016,3(1):1500256.
[30] Chen S L,Shang M H,Wang L,et al.Superior B-doped SiC nanowire flexible field emitters:ultra-low turn-on fields and robust stabilities against harsh environments[J].ACS Applied Materials & Interfaces,2017,9(40):35178-35190.
[31] Weng Wei,Wang Sibo,Xiao Wei,et al.Direct conversion of rice husks to nanostructured SiC/C for CO2 photoreduction[J].Advanced Materials,2020,32(29):2001560.
[32] Peng Y,Han G,Wang D,et al.Improved H-2 evolution under visible light in heterostructured SiC/CdS photocatalyst:effect of lattice match[J].International Journal of Hydrogen Energy,2017,42(21):14409-14417.
[33] 朱红庆,杨兵,魏世强,等.微米SiC/石墨烯复合物光催化降解罗丹明B[J].环境科学,2020,41(2):756-762.
[34] Gu L,Wang Y W,Fang Y J,et al.Performance characteristics of supercapacitor electrodes made of silicon carbide nanowires grown on carbon fabric[J].Journal of Power Sources,2013,243:648-653.
[35] Zhang Z H,Tan J,Cheng L S,et al.In-situ growth of silicon carbide nanofibers on carbon fabric as robust supercapacitor electrode[J].Ceramics International,2021,47(17):24652-24662.
[36] Chen J P,Song G,Liu Z,et al.Preparation of SiC whiskers using graphene and rice husk ash and its photocatalytic property[J].Journal of Alloys and Compounds,2020,833:155072.
[37] 高晓东,杨卫民,程礼盛,等.导电玻璃纤维及其功能复合材料研究进展[J].复合材料学报,2021,38(1):36-44.
[38] Gupta S,Tai N H.Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band[J].Carbon,2019,152:159-187.
[39] 肖婷.多尺度碳/碳化硅复合材料的制备及吸波性能研究[D].北京:北京科技大学,2021.
[40] Liang C Y,Wang Z J.Controllable fabricating dielectric-dielectric SiC@C core-shell nanowires for high-performance electromagnetic wave attenuation[J].ACS Applied Materials & Interfaces,2017,9(46):40690-40696.
[41] Cai Z X,Su L,Wang H J,et al.Hydrophobic SiC@C nanowire foam with broad-band and mechanically controlled electromagnetic wave absorption[J].ACS Applied Materials & Interfaces,2020,12(7):8555-8562.
[42] Li S T,Liu D Y,Li W C,et al.Strong and heat-resistant SiC-coated carbonized natural loofah sponge for electromagnetic interference shielding[J].ACS Sustainable Chemistry & Engineering,2020,8(1):435-444.
[43] 王坤,张涛,王建,等.壳核结构SiC/C纤维的制备与吸波性能的研究[J].硅酸盐通报,2021,40(4):1378-1387.
[44] 武志红,张路平,郑海康,等.MoSi2对Cf/SiC/Ni复合材料微观结构及吸波性能的影响[J].硅酸盐学报,2020,48(4):525-532.
[45] Chen Z D,Wu Z Y,Su J J,et al.Large-scale and low-cost synthesis of in situ generated SiC/C nano-composites from rice husks for advanced electromagnetic wave absorption applications[J].Surface & Coatings Technology,2021,406:126641.
Options
文章导航

/