科学研究

化学接枝氨基化碳纳米管桥接金属有机骨架储存二氧化碳研究

展开
  • 南京工业大学化工学院国家重点实验室,南京 211800
郑佳佳(1999-),男,硕士研究生,主要研究方向为功能高分子材料,E-mail:202161204339@njtech.edu.cn。
俞娟(1985-),女,博士研究生,主要研究方向为功能高分子材料,E-mail:juanyu@njtech.edu.cn。

收稿日期: 2023-07-07

  修回日期: 2024-05-07

  网络出版日期: 2024-10-17

基金资助

国家自然科学基金(22035007)

Study on carbon dioxide storage using chemically grafted aminated carbon nanotubes bridged metal-organic skeletons

Expand
  • State Key Laboratory,School of Chemical Engineering,Nanjing University of Technology, Nanjing 211800

Received date: 2023-07-07

  Revised date: 2024-05-07

  Online published: 2024-10-17

摘要

通过化学方法在多壁碳纳米管(CNT)表面引入氨基,并利用超支化聚乙烯亚胺(PEI)将其桥接到金属有机骨架(MOFs),合成一种具有吸附CO2能力的新型复合材料。采用傅里叶红外光谱(FT-IR)、热重分析(TGA)、扫描电子显微镜(SEM)、CO2吸附-脱附等方法对制备的新型复合材料的吸附性能、热稳定性及形貌等进行表征。结果显示,通过添加超支化PEI制备的复合材料,具有优异的CO2吸附性能,其表面丰富的多氨基位点促进了CO2的存储。氨基化后的CNT与MOFs的协同作用,进一步改善了复合材料的CO2储存能力,吸附量达到462.33cm3/g,同时增强了材料的热稳定性能。

本文引用格式

郑佳佳, 杭建嵘, 俞娟, 王晓东, 黄培 . 化学接枝氨基化碳纳米管桥接金属有机骨架储存二氧化碳研究[J]. 化工新型材料, 2024 , 52(10) : 146 -150 . DOI: 10.19817/j.cnki.issn1006-3536.2024.10.016

Abstract

This paper chemically introduced amino groups on the surface of multi-wall carbon nanotubes (CNT) and bridged hyperbranched polyvinylenimine (PEI) to metal-organic frameworks (MOFs) to synthesize a new composite material with CO2 adsorption capability.The adsorption properties,thermal stability and morphology of the prepared composite materials were characterized by Fourier infrared spectroscopy (FT-IR),thermo-weight analysis (TGA),scanning electron microscopy (SEM),CO2 adsorption-desorption and other methods.The results showed that the composite material prepared by the addition of hyperbranched PEI had excellent CO2 adsorption properties,and the abundant polyamino sites on its surfaces facilitated CO2 storage.The synergistic effect of the aminated CNT and MOFs further improved the CO2 storage capacity of the composite,and the adsorption amount reached 462.33cm3/g,while enhancing the thermal stability of the material.

参考文献

[1] 赫永达,文红,孙传旺.“十四五”期间我国碳排放总量及其结构预测——基于混频数据ADL-MIDAS模型[J].经济问题,2021,(4):31-40.
[2] 刘萍,杨卫华,张建,等.碳中和目标下的减排技术研究进展[J].现代化工,2021,41(6):6-10.
[3] 宋晓波,胡伯.碳中和背景下煤炭行业低碳发展研究[J].中国煤炭,2021,47(7):17-24.
[4] Shen J,Zhang Q,Xu L,et al.Future CO2 emission trends and radical decarbonization path of iron and steel industry in China[J].Journal of Cleaner Production,2021,326:129354.
[5] 黄利,于焕生,何丹,等.国内碳汇研究进展与前沿动态追踪——基于CNKI期刊文献的可视化分析[J].林业经济,2020,42(4):46-55.
[6] Sylvia S,Raghav M,Michael L,et al.Carbon footprinting of carbon capture and -utilization technologies:discussion of the analysis of Carbon XPRIZE competition team finalists[J].Clean Energy,2021,5(4):587-599.
[7] Andreoli E,Dillon E P,Cullum L,et al.Cross-linking amine-rich compounds into high performing selective CO2 absorbents[J].Scientific Reports,2014,4:7304.
[8] 吴谋亮.LNG冷能应用于天然气富氧燃烧电厂的模拟研究[D].武汉:华中科技大学,2016.
[9] 张迎亚,张利雄.金属有机骨架材料成型的研究进展[J].南京工业大学学报(自然科学版),2018,40(6):124-130.
[10] Christoph J,Jana K.MOFs,MILs and More:concepts,properties and applications for porous coordination networks(PCNs)[J].New J Chem,2010,34:2366-2388.
[11] Furukawa H,Cordova K E,Keeffe M O,et al.The chemistry and applications of metal-organic frameworks[J].Science,2013,341:6149.
[12] Lu G,Hupp J T.Metal-organic frameworks as sensors:a ZIF-8 based fabry-perot device as a selective sensor for chemical vapors and gases[J].Journal of the American Chemical Society,2010,132(23):7832.
[13] Zhao Y,Seredych M,Zhong Q,et al.Superior performance of copper based MOF and aminated graphite oxide composites as CO2 adsorbents at room temperature[J].ACS Applied Materials & Interfaces,2013,5(11):4951-4959.
[14] Eddaoudi M,Kim J,Rosi N,et al.Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J].Science,2002,295(5554):469-472.
[15] Lin Y,Yan Q,Kong C,et al.Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture[J].Scientific Reports,2013,3:1859.
[16] Qi G,Wang Y,Estevez L,et al.High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules[J].Energy & Environmental Science,2011,4(2):444-452.
[17] Qi G,Fu L,Choi B H,et al.Efficient CO2 sorbents based on silica foam with ultra-large mesopores[J].Energy & Environmental Science,2012,5(6):7368-7375.
[18] Gaikwad S,Kim S,Han S.CO2 capture using amine-functionalized bimetallic MIL-101 MOFs and their stability on exposure to humid air and acid gases[J].Microporous and Mesoporous Materials,2019,277:253-260.
[19] Fang J,Zhang L,Li C.Polyamide 6 composite with highly improved mechanical properties by PEI-CNT grafted glass fibers through interface wetting,infiltration and crystallization[J].Polymer,2019,172:253-264.
[20] Lin R,Ge L,Hou L,et al.Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance[J].ACS Applied Materials & Interfaces,2014,6(8):5609-5618.
[21] Yang S,Peng L,Sun D T,et al.A new post-synthetic polymerization strategy makes metal-organic frameworks more stable[J].Chemical Science,2019,10(17):4542-4549.
[22] Peikert K,Hoffmann F,Froeba M.Amino substituted Cu-3(btc)(2):a new metal-organic framework with a versatile functionality[J].Chemical Communications,2012,48(91):11196-11198.
[23] 中国光学学会,中国化学会.第十七届全国分子光谱学学术会议论文集[C].北京:北京大学出版社,2012:91-92.
[24] 鲁雪婷,蒲彦锋,李磊,等.氨基修饰的金属有机框架Cu3(BTC)2的制备及其CO2吸附性能研究[J].燃料化学学报,2019,47(3):338-343.
[25] Martinez F,Sanz R,Orcajo G,et al.Amino-impregnated MOF materials for CO2 capture at post-combustion conditions[J].Chemical Engineering Science,2016,142:55-61.
[26] 武阳.高吡咯氮掺杂微孔碳和有序介孔Ni/碳复合材料的制备及其CO2吸附性能[D].南宁:广西大学,2018.
Options
文章导航

/