综述与专论

柔性压电复合材料的研究进展

展开
  • 1.沈阳工业大学机械工程学院,沈阳 110870;
    2.北京航空航天大学宁波创新研究院,宁波 315800
杨旭(2000-),男,硕士研究生,研究方向为纳米高分子复合材料多尺度计算与应用,E-mail:yangxu20000103@163.com。
李云龙(1988-),男,副教授,主要从事纳米高分子复合材料多尺度研究,E-mail:li_yunlong3390@163.com。

收稿日期: 2023-07-28

  修回日期: 2024-05-09

  网络出版日期: 2024-10-17

基金资助

2023年辽宁省应用基础研究计划项目(2023JH2/101600065);国家自然科学基金(52105062);北京航空航天大学宁波创新研究院青年基金(NBQN202106002)

Research progress of flexible piezoelectric composites

Expand
  • 1. School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870;
    2. Ningbo Innovation Research Institute,Beijing University of Aeronautics and Astronautics, Ningbo 315800

Received date: 2023-07-28

  Revised date: 2024-05-09

  Online published: 2024-10-17

摘要

柔性压电复合材料常被应用于医学和航空航天等多个领域,具有广阔的工程应用前景和巨大的商业价值。因此,综述了柔性压电复合材料,介绍了以聚二甲基硅氧烷(PDMS)为代表的柔性基体和纳米填料。随后分析了制备工艺以及在制备中出现的团聚问题。同时,总结了物理与化学分散法以及双亲助溶剂促进分散的机理。最后归纳了机器学习(ML)、分子模拟和宏观试验3种研究方法。

本文引用格式

杨旭, 李云龙, 钱程, 王世杰, 聂瑞 . 柔性压电复合材料的研究进展[J]. 化工新型材料, 2024 , 52(10) : 39 -44 . DOI: 10.19817/j.cnki.issn1006-3536.2024.10.045

Abstract

Flexible piezoelectric composites are often used in many fields such as medicine and aerospace,and have broad engineering application prospects and great commercial value.Therefore,flexible piezoelectric composites were reviewed,and flexible substrates and nanofillers represented by polydimethylsiloxane (PDMS) were introduced.The preparation process and the agglomeration problems during preparation were then analyzed.At the same time,the physical and chemical dispersion methods and the mechanism of amphiphilic co-solvent to promote dispersion were summarized.Finally,three research methods,namely machine learning (ML),molecular simulation,and macroscopic experimentation,were summarized.

参考文献

[1] Yazdani A,Manesh H D,Zebarjad S M.Piezoelectric properties and damping behavior of highly loaded PZT/polyurethane particulate composites[J].Ceramics International,2023,49:4055-4063.
[2] Batra K,Sinha N,Kumar B.Tb-doped ZnO∶PDMS based flexible nanogenerator with enhanced piezoelectric output performance by optimizing nanofiller concentration[J].Ceramics International,2020,46(15):24120-24128.
[3] Ye S,Cheng C,Chen X,et al.High-performance piezoelectric nanogenerator based on microstructured P(VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space[J].Nano Energy,2019,60:701-714.
[4] 沈书逸,李江,徐倩倩,等.PZT基复合材料的3D打印制备及其柔性传感性能研究[J].压电与声光,2022,44(4):526-530.
[5] Muduli S P,Parida S,Behura S K,et al.Synergistic effect of graphene on dielectric and piezoelectric characteristic of PVDF-(BZT-BCT) composite for energy harvesting applications[J].Polymers for Advanced Technologies,2022,33(10):3628-3642.
[6] Yadav P,Raju T D,Badhulika S.Self-poled hBN-PVDF nanofiber mat-based low-cost,ultrahigh-performance piezoelectric nanogenerator for biomechanical energy harvesting[J].ACS Applied Electronic Materials,2020,2(7):1970-1980.
[7] 曹鑫林,王先进,郭成东,等.一种电子皮肤的触觉传感性能研究[J].压电与声光,2022,44(1):118-124.
[8] Wang X,Ju W,Wang D,et al.Flexible MA2Z4 (M= Mo,W;A= Si,Ge and Z= N,P,As) monolayers with outstanding mechanical,dynamical,piezoelectric properties and anomalous dynamic polarization[J].Physical Chemistry Chemical Physics,2023,25:18247-18258.
[9] 苏瑞,袁卫锋,刘海东,等.VB2/SiO2/PVDF复合材料压电薄膜的性能研究[J].塑料工业,2021,49(5):161-166.
[10] 刘洋,汪尧进.柔性压电材料及器件应用[J].硅酸盐学报,2022,50(3):625-641.
[11] Du X,Zhou Z,Zhang Z,et al.Porous,multi-layered piezoelectric composites based on highly oriented PZT/PVDF electrospinning fibers for high-performance piezoelectric nanogenerators[J].Journal of Advanced Ceramics,2022,11:331-344.
[12] 肖志达,袁晰,闫明洋,等.柔性压电纤维复合材料传感器的制备及应用[J].中国有色金属学报,2023,33(2):413-424.
[13] Saxena P,Shukla P.A comprehensive review on fundamental properties and applications of poly (vinylidene fluoride)(PVDF)[J].Advanced Composites and Hybrid Materials,2021,4:8-26.
[14] Eltouby P,Shyha I,Li C,et al.Factors affecting the piezoelectric performance of ceramic-polymer composites:a comprehensive review[J].Ceramics International,2021,47(13):17813-17825.
[15] Snapp P,Cho C,Lee D,et al.Tunable piezoelectricity of multifunctional boron nitride nanotube/poly (dimethylsiloxane) stretchable composites[J].Advanced Materials,2020,32(43):2004607.
[16] Zhang C,Wei W,Sun H,et al.Study on the properties of different dielectric elastomers applying to actuators[J].Sensors and Actuators A:Physical,2021,329:112806.
[17] 姚宽明,姚靖仪,海照,等.用于触觉感知的自供能可拉伸压电橡胶皮肤电子器件[J].物理学报,2020,69(17):175-183.
[18] Montazerian H,Mohamed M G A,Montazeri M M,et al.Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces[J].Acta biomaterialia,2019,96:149-160.
[19] Zhang Z,Weng L,Guo K,et al.Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films[J].Ceramics International,2022,48(4):4977-4985.
[20] 黄秀,刘倩,江桂斌.碳纳米材料分析方法的研究进展[J].分析科学学报,2019,35(6):701-710.
[21] 陈广州,陈刚,潘莉,等.基于PVDF/GO纳米复合薄膜的柔性压电传感器[J].微纳电子技术,2022,59(3):236-241.
[22] Lee G J,Lee M K,Park J J,et al.Piezoelectric energy harvesting from two-dimensional boron nitride nanoflakes[J].ACS Applied Materials & Interfaces,2019,11(41):37920-37926.
[23] Rabani I,Park Y J,Lee J W,et al.Ultra-thin flexible paper of BNNT-CNF/ZnO ternary nanostructure for enhanced solid-state supercapacitor and piezoelectric response[J].Journal of Materials Chemistry A,2022,10(29):15580-15594.
[24] Schreiner P R.Quantum mechanical tunneling is essential to understanding chemical reactivity[J].Trends in Chemistry,2020,2(11):980-989.
[25] Hao Y,Hou Y,Xu H,et al.Enhancing the energy harvesting performance of PDMS based piezocomposites via a synergistic effect[J].Journal of Materials Chemistry C,2021,9(40):14303-14308.
[26] Zhang X,Xia W,Liu J,et al.PVDF-based and its copolymer-based piezoelectric composites:preparation methods and applications[J].Journal of Electronic Materials,2022,51(10):5528-5549.
[27] 李晓燕,张智慧,姚继明.基于印刷技术制备柔性微型电容器的研究进展[J].纺织学报,2022,43(12):197-202,212.
[28] Wang L,Wang K,Shi S,et al.3D printed 0-3 type piezoelectric composites with high voltage sensitivity[J].Ceramics International,2022,48(9):12559-12568.
[29] 苏晓晓,李银辉,李廷鱼,等.BTO/PDMS/C柔性复合薄膜的制备及压电性能研究[J].压电与声光,2020,42(4):563-567.
[30] 张守健,姜庆伟,张晓青,等.碳纳米管在铜基复合材料中分散的研究进展[J].炭素技术,2023,42(2):1-7.
[31] 罗翠线,王莹,李朋伟.基于无铅钛酸钡/石墨烯/PDMS三相复合压电纳米发电机的研究[J].电子学报,2022,50(9):2189-2195.
[32] 赵旸周,袁卫锋.纳米二氧化硅/聚偏氟乙烯复合材料薄膜的压电性能[J].材料科学与工程学报,2019,37(4):599-603,618.
[33] Wang C,Gao X,Zheng M,et al.Two-step regulation strategy improving stress transfer and poling efficiency boosts piezoelectric performance of 0-3 piezocomposites[J].ACS Applied Materials & Interfaces,2021,13(35):41735-41743.
[34] Tiano A L,Gibbons L,Tsui M,et al.Thermodynamic approach to boron nitride nanotube solubility and dispersion[J].Nanoscale,2016,8(7):4348-4359.
[35] 池喆敏,赵婷婷,琚艳云,等.聚酰亚胺/锆钛酸铅柔性压电传感器的制备及性能[J].电子元件与材料,2022,41(8):816-821.
[36] Mohammad M A,Alhalaweh A,Velaga S P.Hansen solubility parameter as a tool to predict cocrystal formation[J].International Journal of Pharmaceutics,2011,407(1-2):63-71.
[37] Zhao L,Wang Q,Ma K J.Solubility parameter of ionic liquids:a comparative study of inverse gas chromatography and Hansen solubility sphere[J].ACS Sustainable Chemistry & Engineering,2019,7(12):10544-10551.
[38] Agata Y,Yamamoto H.Determination of Hansen solubility parameters of ionic liquids using double-sphere type of Hansen solubility sphere method[J].Chemical Physics,2018,513:165-173.
[39] 米晓希,汤爱涛,朱雨晨,等.机器学习技术在材料科学领域中的应用进展[J].材料导报,2021,35(15):15115-15124.
[40] Mortazavi B,Shojaei F,Yagmurcukardes M,et al.Anisotropic and outstanding mechanical,thermal conduction,optical,and piezoelectric responses in a novel semiconducting BCN monolayer confirmed by first-principles and machine learning[J].Carbon,2022,200:500-509.
[41] 王艺涵,贾丹,詹胜鹏,等.机器学习在聚合物材料研究中的应用进展[J].高校化学工程学报,2023,37(2):170-180.
[42] Yuan R,Xue D,Xue D,et al.The search for BaTiO 3-based piezoelectrics with large piezoelectric coefficient using machine learning[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2018,66(2):394-401.
[43] Jing H,Guan C,Yang Y,et al.Machine learning-assisted design of AlN-based high-performance piezoelectric materials[J].Journal of Materials Chemistry A,2023,11:14840-14849.
[44] Tan D,Xiang Y,Leng Y,et al.On the metal/ZnO contacts in a sliding-bending piezoelectric nanogenerator[J].Nano Energy,2018,50:291-297.
[45] Zhou Z,Zhan C,Kan E.Understanding the piezocatalytic properties of the BaTiO3 (001) surface via density functional theory[J].Physical Chemistry Chemical Physics,2023,25(12):8631-8640.
[46] Qu P,Zhu X,Peng X,et al.Ultrathin ceramic nanowires for high interface interaction and energy density in PVDF nanocomposites[J].International Journal of Applied Ceramic Technology,2019,16(3):1200-1208.
[47] Samadoloh S,Promsawat N,Kalkornsurapranee E,et al.Fabrication and characterization of flexible piezoelectric composites with natural rubber matrix[J].Integrated Ferroelectrics,2019,195(1):30-38.
[48] 魏子钦,夏翔,李勤,等.钛酸钡/硅酸钙复合生物活性压电陶瓷的制备及性能研究[J].无机材料学报,2022,37(6):617-622.
[49] Ma J,Zhu K,Huo D,et al.Performance enhancement of 1-3 piezoelectric composite materials by alternating current polarising[J].Ceramics International,2021,47(13):18405-18410.
Options
文章导航

/