[1] Yazdani A,Manesh H D,Zebarjad S M.Piezoelectric properties and damping behavior of highly loaded PZT/polyurethane particulate composites[J].Ceramics International,2023,49:4055-4063.
[2] Batra K,Sinha N,Kumar B.Tb-doped ZnO∶PDMS based flexible nanogenerator with enhanced piezoelectric output performance by optimizing nanofiller concentration[J].Ceramics International,2020,46(15):24120-24128.
[3] Ye S,Cheng C,Chen X,et al.High-performance piezoelectric nanogenerator based on microstructured P(VDF-TrFE)/BNNTs composite for energy harvesting and radiation protection in space[J].Nano Energy,2019,60:701-714.
[4] 沈书逸,李江,徐倩倩,等.PZT基复合材料的3D打印制备及其柔性传感性能研究[J].压电与声光,2022,44(4):526-530.
[5] Muduli S P,Parida S,Behura S K,et al.Synergistic effect of graphene on dielectric and piezoelectric characteristic of PVDF-(BZT-BCT) composite for energy harvesting applications[J].Polymers for Advanced Technologies,2022,33(10):3628-3642.
[6] Yadav P,Raju T D,Badhulika S.Self-poled hBN-PVDF nanofiber mat-based low-cost,ultrahigh-performance piezoelectric nanogenerator for biomechanical energy harvesting[J].ACS Applied Electronic Materials,2020,2(7):1970-1980.
[7] 曹鑫林,王先进,郭成东,等.一种电子皮肤的触觉传感性能研究[J].压电与声光,2022,44(1):118-124.
[8] Wang X,Ju W,Wang D,et al.Flexible MA2Z4 (M= Mo,W;A= Si,Ge and Z= N,P,As) monolayers with outstanding mechanical,dynamical,piezoelectric properties and anomalous dynamic polarization[J].Physical Chemistry Chemical Physics,2023,25:18247-18258.
[9] 苏瑞,袁卫锋,刘海东,等.VB2/SiO2/PVDF复合材料压电薄膜的性能研究[J].塑料工业,2021,49(5):161-166.
[10] 刘洋,汪尧进.柔性压电材料及器件应用[J].硅酸盐学报,2022,50(3):625-641.
[11] Du X,Zhou Z,Zhang Z,et al.Porous,multi-layered piezoelectric composites based on highly oriented PZT/PVDF electrospinning fibers for high-performance piezoelectric nanogenerators[J].Journal of Advanced Ceramics,2022,11:331-344.
[12] 肖志达,袁晰,闫明洋,等.柔性压电纤维复合材料传感器的制备及应用[J].中国有色金属学报,2023,33(2):413-424.
[13] Saxena P,Shukla P.A comprehensive review on fundamental properties and applications of poly (vinylidene fluoride)(PVDF)[J].Advanced Composites and Hybrid Materials,2021,4:8-26.
[14] Eltouby P,Shyha I,Li C,et al.Factors affecting the piezoelectric performance of ceramic-polymer composites:a comprehensive review[J].Ceramics International,2021,47(13):17813-17825.
[15] Snapp P,Cho C,Lee D,et al.Tunable piezoelectricity of multifunctional boron nitride nanotube/poly (dimethylsiloxane) stretchable composites[J].Advanced Materials,2020,32(43):2004607.
[16] Zhang C,Wei W,Sun H,et al.Study on the properties of different dielectric elastomers applying to actuators[J].Sensors and Actuators A:Physical,2021,329:112806.
[17] 姚宽明,姚靖仪,海照,等.用于触觉感知的自供能可拉伸压电橡胶皮肤电子器件[J].物理学报,2020,69(17):175-183.
[18] Montazerian H,Mohamed M G A,Montazeri M M,et al.Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces[J].Acta biomaterialia,2019,96:149-160.
[19] Zhang Z,Weng L,Guo K,et al.Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films[J].Ceramics International,2022,48(4):4977-4985.
[20] 黄秀,刘倩,江桂斌.碳纳米材料分析方法的研究进展[J].分析科学学报,2019,35(6):701-710.
[21] 陈广州,陈刚,潘莉,等.基于PVDF/GO纳米复合薄膜的柔性压电传感器[J].微纳电子技术,2022,59(3):236-241.
[22] Lee G J,Lee M K,Park J J,et al.Piezoelectric energy harvesting from two-dimensional boron nitride nanoflakes[J].ACS Applied Materials & Interfaces,2019,11(41):37920-37926.
[23] Rabani I,Park Y J,Lee J W,et al.Ultra-thin flexible paper of BNNT-CNF/ZnO ternary nanostructure for enhanced solid-state supercapacitor and piezoelectric response[J].Journal of Materials Chemistry A,2022,10(29):15580-15594.
[24] Schreiner P R.Quantum mechanical tunneling is essential to understanding chemical reactivity[J].Trends in Chemistry,2020,2(11):980-989.
[25] Hao Y,Hou Y,Xu H,et al.Enhancing the energy harvesting performance of PDMS based piezocomposites via a synergistic effect[J].Journal of Materials Chemistry C,2021,9(40):14303-14308.
[26] Zhang X,Xia W,Liu J,et al.PVDF-based and its copolymer-based piezoelectric composites:preparation methods and applications[J].Journal of Electronic Materials,2022,51(10):5528-5549.
[27] 李晓燕,张智慧,姚继明.基于印刷技术制备柔性微型电容器的研究进展[J].纺织学报,2022,43(12):197-202,212.
[28] Wang L,Wang K,Shi S,et al.3D printed 0-3 type piezoelectric composites with high voltage sensitivity[J].Ceramics International,2022,48(9):12559-12568.
[29] 苏晓晓,李银辉,李廷鱼,等.BTO/PDMS/C柔性复合薄膜的制备及压电性能研究[J].压电与声光,2020,42(4):563-567.
[30] 张守健,姜庆伟,张晓青,等.碳纳米管在铜基复合材料中分散的研究进展[J].炭素技术,2023,42(2):1-7.
[31] 罗翠线,王莹,李朋伟.基于无铅钛酸钡/石墨烯/PDMS三相复合压电纳米发电机的研究[J].电子学报,2022,50(9):2189-2195.
[32] 赵旸周,袁卫锋.纳米二氧化硅/聚偏氟乙烯复合材料薄膜的压电性能[J].材料科学与工程学报,2019,37(4):599-603,618.
[33] Wang C,Gao X,Zheng M,et al.Two-step regulation strategy improving stress transfer and poling efficiency boosts piezoelectric performance of 0-3 piezocomposites[J].ACS Applied Materials & Interfaces,2021,13(35):41735-41743.
[34] Tiano A L,Gibbons L,Tsui M,et al.Thermodynamic approach to boron nitride nanotube solubility and dispersion[J].Nanoscale,2016,8(7):4348-4359.
[35] 池喆敏,赵婷婷,琚艳云,等.聚酰亚胺/锆钛酸铅柔性压电传感器的制备及性能[J].电子元件与材料,2022,41(8):816-821.
[36] Mohammad M A,Alhalaweh A,Velaga S P.Hansen solubility parameter as a tool to predict cocrystal formation[J].International Journal of Pharmaceutics,2011,407(1-2):63-71.
[37] Zhao L,Wang Q,Ma K J.Solubility parameter of ionic liquids:a comparative study of inverse gas chromatography and Hansen solubility sphere[J].ACS Sustainable Chemistry & Engineering,2019,7(12):10544-10551.
[38] Agata Y,Yamamoto H.Determination of Hansen solubility parameters of ionic liquids using double-sphere type of Hansen solubility sphere method[J].Chemical Physics,2018,513:165-173.
[39] 米晓希,汤爱涛,朱雨晨,等.机器学习技术在材料科学领域中的应用进展[J].材料导报,2021,35(15):15115-15124.
[40] Mortazavi B,Shojaei F,Yagmurcukardes M,et al.Anisotropic and outstanding mechanical,thermal conduction,optical,and piezoelectric responses in a novel semiconducting BCN monolayer confirmed by first-principles and machine learning[J].Carbon,2022,200:500-509.
[41] 王艺涵,贾丹,詹胜鹏,等.机器学习在聚合物材料研究中的应用进展[J].高校化学工程学报,2023,37(2):170-180.
[42] Yuan R,Xue D,Xue D,et al.The search for BaTiO 3-based piezoelectrics with large piezoelectric coefficient using machine learning[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2018,66(2):394-401.
[43] Jing H,Guan C,Yang Y,et al.Machine learning-assisted design of AlN-based high-performance piezoelectric materials[J].Journal of Materials Chemistry A,2023,11:14840-14849.
[44] Tan D,Xiang Y,Leng Y,et al.On the metal/ZnO contacts in a sliding-bending piezoelectric nanogenerator[J].Nano Energy,2018,50:291-297.
[45] Zhou Z,Zhan C,Kan E.Understanding the piezocatalytic properties of the BaTiO3 (001) surface via density functional theory[J].Physical Chemistry Chemical Physics,2023,25(12):8631-8640.
[46] Qu P,Zhu X,Peng X,et al.Ultrathin ceramic nanowires for high interface interaction and energy density in PVDF nanocomposites[J].International Journal of Applied Ceramic Technology,2019,16(3):1200-1208.
[47] Samadoloh S,Promsawat N,Kalkornsurapranee E,et al.Fabrication and characterization of flexible piezoelectric composites with natural rubber matrix[J].Integrated Ferroelectrics,2019,195(1):30-38.
[48] 魏子钦,夏翔,李勤,等.钛酸钡/硅酸钙复合生物活性压电陶瓷的制备及性能研究[J].无机材料学报,2022,37(6):617-622.
[49] Ma J,Zhu K,Huo D,et al.Performance enhancement of 1-3 piezoelectric composite materials by alternating current polarising[J].Ceramics International,2021,47(13):18405-18410.