科学研究

高连通性硼氮COFs材料设计及其甲烷吸附性能模拟研究

展开
  • 1.河南工业大学理学院,郑州450001;
    2.南阳师范学院物理与电子工程学院,南阳473061
杨朋辉(1999-),男,硕士研究生,研究方向为多孔材料设计及气体吸附模拟,E-mail:yyph@stu.haut.edu.cn。
李晓东,E-mail:xiaodongli@haut.edu.cn。

收稿日期: 2023-09-19

  修回日期: 2024-04-17

  网络出版日期: 2024-07-24

基金资助

国家自然科学基金(11447142和11504088);河南省科技攻关计划项目(242102240064);河南工业大学青年骨干教师培育项目(21420083)

Design of high connectivity boron-nitrogen COFs materials and simulation of their methane adsorption performance

Expand
  • 1. College of Science,Henan University of Technology,Zhengzhou 450001;
    2. College of Physics and Electronic engineering,Nanyang Normal University,Nanyang 473061

Received date: 2023-09-19

  Revised date: 2024-04-17

  Online published: 2024-07-24

摘要

采用密度泛函理论(DFT)方法,基于立方体构筑单元(—B4N4O12—)理论设计得到了5种新型高连通性硼氮共价有机骨架(BN-COFs)材料。对5种材料结构进行理论表征,并采用巨正则蒙特卡罗(GCMC)方法模拟研究了250K、298K和350K(K=273.15℃)温度下材料对甲烷(CH4)的吸附性能。结果表明:5种材料中BN-COF-5对CH4的吸附性能最佳,在250K、298K和350K下的最大CH4吸附量分别为237.41cm3(STP)/cm3、177.76cm3(STP)/cm3和117.86cm3(STP)/cm3,最大工作容量(298K,65bar→5bar)为119.46cm3(STP)/cm3。CH4分子在骨架中的质心密度分布结果表明,CH4的最佳吸附位点处于(—B4N4O12—)团簇以及线性配体形成的角落附近。所设计的高连通性BN-COFs具有良好的CH4吸附性能,可为实验上研究开发新型CH4吸附剂提供一定的理论参考。

本文引用格式

杨朋辉, 李晓东, 王耀东, 张慧东, 黄晓玉 . 高连通性硼氮COFs材料设计及其甲烷吸附性能模拟研究[J]. 化工新型材料, 2024 , 52(7) : 212 -217 . DOI: 10.19817/j.cnki.issn1006-3536.2024.07.051

Abstract

By using density functional theory (DFT) method,five novel high connectivity boron-nitrogen covalent organic framework (BN-COFs) materials were designed based on the cube building unit (—B4N4O12—).The structures of the five materials were characterized theoretically.The adsorption properties of the materials for methane (CH4) at 250K,298K and 350K were simulated and investigated by using grand canonical Monte Carlo (GCMC) method.The results showed that BN-COF-5 had the best adsorption performance for CH4 among the five materials.The maximum CH4 adsorption capacities at 250K,298K and 350K were 237.41cm3(STP)/cm3,177.76cm3(STP)/cm3 and 117.86cm3(STP)/cm3,respectively.The maximum working capacity (298K,65bar→5bar) was 119.46cm3(STP)/cm3.The centroid density distribution of CH4 molecules in the skeleton revealed that the optimal adsorption site for CH4 was near the corner where the (—B4N4O12—) cluster and linear ligand were formed.The high connectivity BN-COFs designed in this study had good CH4 adsorption performance,which could provide a theoretical reference for the experimental research and development of new CH4 adsorbents.

参考文献

[1] Betts R A,Collins M,Hemming D L,et al.When could global warming reach 4℃?[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,2011,369:67.
[2] Sun J,Jarvi T D,Conopask L F J E,et al.Direct measurements of volumetric gas storage capacity and some new insight into adsorbed natural gas storage[J].Energy & Fuels,2001,15:1241.
[3] Mota J P,Lyubchik S.Adsorbed natural gas technology[J].Recent Advances in Adsorption Processes for Environmental Protection and Security,2008:177-192.
[4] 李想,顾恒昌,张佳瑾,等.金属有机骨架材料应用于甲烷吸附储存研究进展[J].化工新型材料,2021,49(1):56-60.
[5] Makal T A,Li J R,Lu W,et al.Methane storage in advanced porous materials[J].ChemInForm,2013,44(11):7761-7779.
[6] Tsivadze A Y,Aksyutin O E,Ishkov A G,et al.Porous carbon-based adsorption systems for natural gas (methane) storage[J].Russian Chemical Reviews,2018,87(10):950-983.
[7] Liu J,Zou R,Zhao Y.Recent developments in porous materials for H2 and CH4 storage[J].Tetrahedron Letters,2016,57(44):4873-4881.
[8] Menon V C,Komarneni S J.Porous adsorbents for vehicular natural gas storage:a review[J].Journal of Porous Materials,1998,5(1):43-58.
[9] Celzard A,Fierro V.Preparing a suitable material designed for methane storage:a comprehensive report[J].Energy & Fuels,2005,19(2):573-583.
[10] Mendoza-Cortés J L,Han S S,Furukawa H,et al.Adsorption mechanism and uptake of methane in covalent organic frameworks:theory and experiment[J].Journal of Physical Chemistry A,2010,114(40):10824-10833.
[11] 刘秀英,李晓凤,张丽英,等.甲烷在不同分子筛中吸附的理论对比研究[J].物理学报,2012,61(14):7.
[12] He Y,Zhou W,Qian G,et al.Methane storage in metal-organic frameworks[J].Chemical Society Reviews,2014,43(16):5657-5678.
[13] 张春燕,罗建新,李爱阳,等.共价有机骨架聚合物(COFs)的应用研究进展[J].高分子通报,2016(2):8.
[14] 刘秀英,李晓凤,于景新,等.Pd负载共价有机骨架COF-108上氢溢流机理的密度泛函理论研究[J].物理学报,2016,65(15):157302.
[15] El-Kaderi H M,Hunt J R,Mendoza-Cortes J L,et al.Designed synthesis of 3D covalent organic frameworks[J].Science,2007,316(5822):268-272.
[16] Kalmutzki M J,Hanikel N,Yaghi O M.Secondary building units as the turning point in the development of the reticular chemistry of MOFs[J].Science Advances,2018,4(10):9180.
[17] Gropp C,Ma T,Hanikel N,et al.Design of higher valency in covalent organic frameworks[J].Science,2020,370(6515):424.
[18] Kohn W,Sham L J.Quantum density oscillations in an inhomogeneous electron gas[J].Physical Review,1965,137(6A):1697-1705.
[19] Perdew J P,Burke K,Ernzerhof M.Generalized gradient approximation made simple[J].Physical Review Letters,1998,77(18):3865-3868.
[20] Monkhorst H J,Pack J D.Special points for Brillouin-zone integrations[J].Physical Review B,1976,13(12):5188-5192.
[21] Käckell P,Furthmüller J,Bechstedt F,et al.Characterization of carbon-carbon bonds on the SiC(001)c(2×2) surface[J].Physical Review B,1996,541(15):66308-10307.
[22] Kresse G,Furthmuller J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Computational Materials Science,1996(1):6.
[23] Pinheiro M,Martin R L,Rycroft C H,et al.Characterization and comparison of pore landscapes in crystalline porous materials[J].Journal of Molecular Graphics & Modelling,2013,44:208-219.
[24] Martin R L,Smit B,Haranczyk M.Addressing challenges of identifying geometrically diverse sets of crystalline porous materials[J].Journal of Chemical Information & Modeling,2012,52(2):308-18.
[25] Dubbeldam D,Calero,Sofía,Ellis D E,et al.RASPA:molecular simulation software for adsorption and diffusion in flexible nanoporous materials[J].Molecular Simulation,2016,42(2):81-101.
[26] Dubbeldam D,Snurr R Q.Recent developments in the molecular modeling of diffusion in nanoporous materials[J].Molecular Simulation,2007,33:305-325.
[27] 王之婧,王俊超,赵行乐,等.CO2在氨基改性MIL-101(Cr)中吸附的分子模拟[J].无机化学学报,2018,34(11):9.
[28] Layo M S,Olafson B D,Goddard W A I.DREIDING:a generic forcefield[J].Journal of Chemical Physics,1990,94:8897-8909.
[29] Dubbeldam D,Calero S,Vlugt T J H,et al.United atom force field for alkanes in nanoporous materials[J].Journal of Physical Chemistry B,2004,108(33):12301-12313.
[30] Snurr,R Q,Bell,et al.Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions[J].Journal of Physical Chemistry Letters,1993,97(51):13742-13752.
Options
文章导航

/