为了降低固化温度,设计了一种80℃条件下由阻尼材料、碳纤维/酚醛树脂基体材料组成的共固化阻尼复合材料。应用分子动力学对阻尼材料和酚醛树脂基体材料进行共固化模拟分析,计算二者发生化学反应的自由能,并通过傅里叶变换红外光谱仪对模拟结果进行可行性验证。由正交试验得到与基体材料在80℃共固化的阻尼材料组分,并按铺层工艺和共固化工艺制备出低温阻尼复合材料,探究了低温阻尼复合材料的阻尼性能及界面结合性能随阻尼层厚度变化的规律。结果表明:丁腈橡胶作为阻尼材料具有较好的阻尼性能;随着阻尼层厚度的减小,复合材料层间剪切强度逐渐增大,界面结合性能较好,当阻尼层厚度为0.1mm时,层间剪切强度达到6.2MPa。
In order to reduce the curing temperature,a co-cured damping composite consisting of damping material and carbon fiber/phenolic resin matrix material at 80℃ was designed.Molecular dynamics (MD) was used to simulate the co-curing of damping and resin matrix materials,calculate the free energy of chemical reaction between them,and verify the feasibility of the simulation results through Fourier infrared spectroscopy test.The damping material components co-cured with the matrix material at 80℃ were obtained from the orthogonal experiment,and damping composites were prepared according to the laying process and co-curing process.Furthermore,the regular between the damping properties and the interface bonding properties of low temperature damping composites with the thickness of damping layer was investigated.The results showed that NBR had better damping properties as a damping material.With the decrease of damping layer thickness,the interlaminar strength of the composite increased gradually,and the interface bonding property was good.When the thickness was 0.1mm,the interlaminar shear strength reached 6.2MPa.
[1] Zheng C S,Liang S.Preparation and damping properties of medium-temperature co-cured phenolic resin matrix compo-site structures[J].Composite Structures,2019,217:122-129.
[2] Zheng C S,Duan F H,Liang S.Manufacturing and mechanical performance of novel epoxy resin matrix carbon fiber reinforced damping composites[J].Composite Structures,2021,256:113099.
[3] 王绍清,苏建民,罗丽,等.嵌入式共固化阻尼复合材料十字型加筋板的自由振动[J].机床与液压,2019,47(24):47-51.
[4] 刘晓东,崔向红,李天智,等.黏弹性约束阻尼复合材料研究进展[J].化学工程师,2016,30(6):37-39;47.
[5] 熊健,李志彬,刘惠彬,等.航空航天轻质复合材料壳体结构研究进展[J].复合材料学报,2021,38(6):1629-1650.
[6] 郑长升,梁森.共固化阻尼复合材料研究进展[J].高分子材料科学与工程,2020,36(3):183-190.
[7] Zheng C S,Yang X F,Wang S Q.Flexural fatigue behavior of novel co-curing damping composite structures[J].Thin-Walled Structures,2022,180:109853.
[8] 吴松岭,高云霞,王辉,等.新型Fe-17Mn-5Cr-1.5Al/聚氨酯高阻尼复合材料制备及性能研究[J].有色金属工程,2021,11(10):20-25.
[9] 陈新乐,梁森,闫盛宇,等.嵌入式共固化高阻尼电磁吸波复合材料[J].材料研究学报,2020,34(1):64-72.
[10] 段风海,梁森,梁天锡.高温老化后嵌入式共固化阻尼复合材料结构的阻尼性能[J].噪声与振动控制,2017,37(1):172-177.
[11] 许砚琦.结构阻尼复合材料的研究及制备工艺[J].航空制造技术,2011(15):75-77.
[12] 朱瑞,黄辉秀,于永峰,等.基于阻尼影响的风电叶片疲劳测试加载位置优化[J].复合材料科学与工程,2020(8):102-106.
[13] 张忠胜,梁森.嵌入式高温共固化复合材料阻尼结构层间结合性能[J].复合材料学报,2013,30(4):185-191.
[14] 张乾,梁森,梁天锡.嵌入式共固化耐高温阻尼复合材料制备及老化前后力学性能[J].航空学报,2015,36(7):2468-2474.
[15] 张乾,梁森,韦利明.嵌入式共固化耐高温阻尼复合材料结构的模态分析试验研究[J].四川兵工学报,2015,36(2):76-79;101.
[16] 古恒.耐高温嵌入式共固化复合材料阻尼结构制备与性能研究[D].青岛:青岛理工大学,2018.
[17] 苑吉河,张曦,李新田,等.4-甲基六氢苯酐固化双酚A型环氧树脂热解的分子动力学模拟[J].绝缘材料,2020,53(9):24-29.
[18] 姚雪霞.β-环糊精和雌二醇的分子动力学模拟和MM-PBSA自由能计算[J].安徽农业科学,2008(29):12557-12559.
[19] 罗芳,高剑,成元华,等.葡萄糖苷酶抑制剂作用机理的分子动力学模拟和自由能计算[J].物理化学学报,2012,28(9):2191-2201.
[20] 祝静.分子间氢键与有机小分子/丁腈橡胶杂化材料阻尼性能的关系及分子模拟研究[D].北京:北京化工大学,2019.
[21] 张成.酚醛树脂在轮胎中的应用进展[J].轮胎工业,2021,41(3):195-201.
[22] 马艳艳,李正军,张松平,等.HBc-VLP的分子动力学模拟和结合自由能计算[J].过程工程学报,2021,21(2):219-229.