综述与专论

超细电气石复合材料的制备及应用研究进展

展开
  • 北华大学材料科学与工程学院,吉林 132000
刘兆勋(1999-),男,硕士研究生,主要研究方向为电气石复合材料,E-mail:501856667@qq.com。
李春风(1976-),男,博士,副教授,主要从事生物质复合材料方面的研究,E-mail:350300302@qq.com。

收稿日期: 2023-03-15

  修回日期: 2024-01-26

  网络出版日期: 2024-05-28

基金资助

国家自然科学基金面上项目(32171712)

Progress in preparation and application of ultrafine tourmaline composites

Expand
  • College of Materials Science and Engineering,Bei Hua University,Jilin 132000

Received date: 2023-03-15

  Revised date: 2024-01-26

  Online published: 2024-05-28

摘要

电气石是我国储量丰富的天然矿物,其具有表面极化、自发电场、发射远红外辐射的性质,并且随着温度和所受应力的变化电场强度会随之改变,因而易于电离空气中的氧气分子和水分子,产生负离子,负离子可以沉淀空气中的灰尘、细菌、使冠状病毒失活并且能够促进人体血液循环。超细电气石(电气石粉碎制备的粉末)可以进一步使其功能性得到提高,得益于净化环境和对人体健康有益的特性,电气石成为了近年来功能性复合材料研究的热点。综述了超细电气石表面改性处理的研究现状,总结了超细电气石复合材料常用的制备方法以及在光催化、抗菌、生态环境等领域的应用进展,分析了不同改性方法和制备方式对于超细电气石复合材料的优势与不足,包括机械球磨法、溶胶-凝胶法、水热/沉淀法以及直接共聚法。并对超细电气石复合材料未来的发展方向进行了展望。

本文引用格式

刘兆勋, 李祥瑞, 秦泽秀, 孟令宇, 李春风 . 超细电气石复合材料的制备及应用研究进展[J]. 化工新型材料, 2024 , 52(5) : 45 -51 . DOI: 10.19817/j.cnki.issn1006-3536.2024.07.041

Abstract

Tourmaline is a natural mineral with abundant reserves in China.It has the properties of surface polarization,spontaneous electric field and emission of far-infrared radiation,and the intensity of electric field changes with the change of temperature and stress.Therefore,it is easy to ionize oxygen molecules and water molecules in the air,producing negative ions,which can precipitate dust and bacteria in the air,inactivate coronavirus and promote human blood circulation.Ultrafine tourmaline (powder prepared by grinding tourmaline) can further improve its functionality.Benefiting from its characteristics of environmental purification and beneficial properties for human health,tourmaline has become a hot spot in the research of functional composites in recent years.The research status of surface modification treatment of was reviewed.The common preparation methods of ultrafine tourmaline composites and their application progress in the fields of photocatalysis,antibacterial properties,ecological environment,etc.were summarized.The advantages and disadvantages of different modification methods and preparation methods for ultrafine tourmaline composites were analyzed,including mechanical ball milling,sol gel,hydrothermal/precipitation,and direct copolymerization.The future development directions of ultrafine tourmaline composites were also prospected.

参考文献

[1] Chen K R,Gai X H,Zhou G J,et al.Study on a new type of pyroelectric materials with structure of tourmaline[J].Ceramics International,2019,45(8):10684-10690.
[2] 何登良,董发勤.电气石的环境功能属性及应用研究动态[J].中国非金属矿工业导刊,2006(1):10-14.
[3] 朱丽娜,温国胜,王海湘,等.空气负离子的研究综述[J].中国农学通报,2019,35(18):44-49.
[4] 文圆,黄惠宁,张国涛,等.电气石性能与应用研究发展[J].陶瓷,2019(2):17-24.
[5] 林森,孙仕勇,申珂璇,等.电气石的环境功能属性及其复合功能材料应用研究[J].材料导报,2017,31(13):131-137.
[6] Lang Sidney B.Guide to the literature of piezoelectricity and pyroelectricity[J].Ferroelectrics,2006,332(1):227-321.
[7] 杜亚利,丁浩.电气石粉体的机械力化学法表面有机化改性研究[J].中国非金属矿工业导刊,2006(5):33-35.
[8] 邓爱民,周建,穆锐.超细负离子粉在有机单体中分散性能的研究[J].沈阳理工大学学报,2015,34(3):37-40,45.
[9] 胡应模,李云华,李梦灿,等.甲基丙烯酰氯对电气石的表面改性与结构表征[J].矿产综合利用,2018(2):147-151.
[10] Hu Y M,Yang X.The surface organic modification of tourmaline powder by span-60 and its composite[J].Applied Surface Science,2012,258(19):7540-7545.
[11] 胡应模,李梦灿,安文峰,等.新型高分子改性剂的合成及含电气石功能聚合物的制备[J].现代地质,2019,33(1):246-250.
[12] 李梦灿,胡应模,候春燕,等.十四碳烯琥珀酸酐改性电气石制备及其表征[J].矿产综合利用,2018(4):133-136.
[13] 陈杰,崔弘妍,张启忠,等.电气石/PP复合材料的制备及性能研究[J].化工新型材料,2018,46(11):222-224,229.
[14] Luo Y L,Chen Q,Wang C H,et al.Preparation and improved negative ion release of graphene/tourmaline composite[J].Materials Research Express,2019,6(5):55-57.
[15] Wang C H,Chen Q,Guo T T,et al.Environmental effects and enhancement mechanism of graphene/tourmaline composites[J].Journal of Cleaner Production,2020,262:121313.
[16] 卢琪.电气石/Al2O3复合材料的制备及其红外辐射性能研究[D].北京:中国地质大学,2011.
[17] Zhang G K,Qin X.Efficient photocatalytic degradation of gaseous formaldehyde by the TiO2/tourmaline composites[J].Materials Research Bulletin,2013,48(10):3743-3749.
[18] 刘欣伟,陈勇,李慧,等.N与La共掺杂纳米TiO2/电气石复合材料的制备及其光催化性能[J].复合材料学报,2016,33(4):875-883.
[19] 张进治,谢亮.复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J].材料导报,2023,37(6):1-15.
[20] 黄凤萍,王帅,张双,等.水热法制备电气石/TiO2纳米管及光催化性能[J].硅酸盐学报,2015,43(7):904-910.
[21] 亓淑艳,王德朋,赵亚栋,等.电气石/ZnO复合材料光催化机制[J].材料工程,2019,47(9):145-151.
[22] 王喜全,王瑞,于亮.Bi2O3/电气石复合催化剂的制备及其光催化性能[J].辽宁科技大学学报,2016,39(5):365-369.
[23] 丁有朋.电气石负载Co-CoAl2O4复合材料的制备及微观结构研究[D].天津:河北工业大学,2021.
[24] 安文峰.硅烷偶联剂改性电气石及其功能复合材料的制备[D].北京:中国地质大学,2020.
[25] 李梦灿,胡应模,李云华,等.甲基丙烯酸电气石酯-乙酸乙烯酯共聚物的制备与表征[J].功能材料,2016,47(12):12230-12234.
[26] 何登良,张蓝心,舒小元,等.纳米ZnO/电气石复合粉体的制备及其对亚甲基蓝光催化性能的研究[J].化工新型材料,2018,46(8):93-96.
[27] Yu C Q,Tong Z,Li S H,et al.Enhancing the photocatalytic activity of ZnO by using tourmaline[J].Materials Letters,2019,240:161-164.
[28] Qi S,Zhao Y,Ma N,et al.Photo catalytic mechanism of tourmaline/BiVO4 composites with different ratios[J].Inorganic an Nano-Metal Chemistry,2019,50(1):1-7.
[29] Wang X J,Hong S,Lian H L,et al.Photocatalytic degradation of surface-coated tourmaline-titanium dioxide for self-cleaning of formaldehyde emitted from furniture[J].Journal of Hazardous Materials,2021,420:126565.
[30] 尹利利,赵明,胡慧林,等.石墨烯/电气石/二氧化钛复合材料的制备及其光催化降解异丙醇性能(英文)[J].催化学报,2017,38(8):1307-1314.
[31] 王菲,于湖生,宫怀瑞.抗菌防螨远红外黏胶纤维的制备及性能研究[J].针织工业,2019(10):7-9.
[32] 何登良,刘来宝,黄春梅,等.银离子包覆电气石复合粉体的抗菌性能及机理研究[J].矿物岩石,2016,36(1):115-119.
[33] Tijing Leonard D,Ruelo Michael Tom G,Amarjargal Altangerel,et al.Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles[J].Chemical Engineering Journal,2012,197:41-48.
[34] Zhang L N,Zhang Z J,Xia X M.Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films[J].Polymer Physics,2004,42(3):367-373.
[35] Guan Runze,Yan Weixing,Yuan Jingjing,et al.Water purification performance enhancement of PVC ultrafiltration membrane modified with tourmaline particles[J].Journal of Polymer Engineering,2021,41(5):413-421.
[36] Yu C Q,Wen M,Li S H,et al.Elbaite catalyze peroxymonosulfate for advanced oxidation of organic pollutants:hydroxyl groups nduced generation of reactive oxygen species[J].Journal of Hazardous Materials,2020,398:122932.
[37] Wang C P,Liu J T,Zhang Z Y,et al.Adsorption of Cd(Ⅱ),Ni(Ⅱ),and Zn(Ⅱ) by tourmaline at acidic conditions:kinetics,thermodynamics,and mechanisms[J].Industrial & Engineering Chemistry Research,2012,51(11):4397-4406.
[38] Chen Y N,Wang S,Li Y P,et al.Adsorption of Pb(Ⅱ) by tourmaline-montmorillonite composite in aqueous phase[J].Journal of Colloid and Interface Science,2020,575:367-376.
[39] Zhang Y H,Shi J,Xu Z W,et al.Degradation of tetracycline in a schorl/H2O2 system:proposed mechanism and intermediates[J].Chemosphere,2018,202:661-668.
[40] Liang Y F,Tang X J,Zhu Q,et al.A review:application of tourmaline in environmental fields[J].Chemosphere,2021,281:130780.
[41] Niu B H,Wang N F,Chen Y M,et al.Tourmaline synergized with persulfate for degradation of sulfadiazine:influencing parameters and reaction mechanism[J].Separation and Purification Technology,2021,257:117893.
[42] Song Y J,Zhu D B,Liang J S,et al.Enhanced mechanical properties of 3 mol% Y2O3 stabilized tetragonal ZrO2 incorporating tourmaline particles[J].Ceramics International,2018,44(13):15550-15556.
[43] Zhang H C,M J P,Liang J S,et al.Effect of the dosage of tourmaline on far infrared emission properties of tourmaline/glass composite materials[J].Journal of Nanoscience and Nanotechnology,2016,16(4):3899-3903(5).
[44] 李欣格,何婕,罗群,等.镁、锂电气石/玻璃复合材料的制备与负离子释放性能对比[J].矿物学报,2022,42(2):239-246.
[45] 赵天宇.电气石/聚合物人工血管的制备及其生物相容性研究[D].天津:河北工业大学,2019.
[46] Chen Q,Wang C H,Qiao Z,et al.Graphene/tourmaline composites as a filler of hot mix asphalt mixture:preparation and properties[J].Construction and Building Materials,2020,239:17859.
[47] Guo T,Fu H,Wang C,et al.Road performance and emission reduction effect of graphene/tourmaline-composite-modified asphalt[J].Sustainability,2021,13(16):8932.
[48] Xue G,Luo X Y,Srinivasakannan C,et al.Effective removal of organic dye and heavy metal from wastewater by tourmaline/graphene oxide composite nano material[J].Materials Research Express,2019,6(11):115618.
[49] Zhang S Y,Sun J,Hu D,et al.Large-sized graphene oxide/modified tourmaline nanoparticle aerogel with stable honeycomb-like structure for high-efficiency PM2.5 capture[J].Journal of Materials Chemistry A,2018,33(6):16139-16148.
Options
文章导航

/