开发与应用

相变储能材料在建筑围护结构领域的应用及研究进展

展开
  • 吉林建筑大学材料科学与工程学院,长春 130118
肖力光(1962-),男,博士,教授,博士研究生导师,主要从事功能材料研究工作,E-mail:xlg627@163.com。
李赫(2000-),男,硕士研究生,主要从事功能材料研究工作,E-mail:18243441360@163.com。

收稿日期: 2023-09-18

  修回日期: 2023-11-30

  网络出版日期: 2024-05-07

基金资助

“十三五”国家重点研发计划(2018YFD1101001)

Application and research progress of phase change energy storage materials in building envelope structures

Expand
  • College of Materials Science and Engineering,Jilin Jianzhu University,Changchun 130118

Received date: 2023-09-18

  Revised date: 2023-11-30

  Online published: 2024-05-07

摘要

相变材料(PCM)具有结构稳定性好、高储能密度、可控相变温度、较大的相变潜热以及出色的储热能力,被用作建筑物中有效的潜在储能元件,以改善由温室气体排放引起的严重环境问题,可有效地减缓燃料和电能消耗,同时在建筑围护结构中保持舒适的环境,最大限度地减少温度波动。简述相变材料的分类及其选取,相变材料的封装工艺,重点介绍了相变储能材料在围护结构领域的研究与应用,指出了影响相变围护结构效率的因素,对其未来的研究方向进行了展望。

本文引用格式

肖力光, 李赫 . 相变储能材料在建筑围护结构领域的应用及研究进展[J]. 化工新型材料, 2024 , 52(4) : 228 -232 . DOI: 10.19817/j.cnki.issn1006-3536.2024.04.035

Abstract

Phase change materials (PCMs) are used as effective potential energy storage elements in buildings due to their good structural stability,high energy storage density,controllable phase change temperature,large phase change latent heat,and excellent heat storage capacity.This application can improve serious environmental problems caused by greenhouse gas emissions and effectively slow down fuel and electrical energy consumption,while maintaining a comfortable environment in the building envelope and minimizing temperature fluctuations.The classification,selection,and encapsulation process of phase change materials were briefly described.The research and application of phase change energy storage materials in the field of envelope structures were highlighted.The factors influencing the efficiency of phase change envelope structures were pointed out,and the future research directions were prospected.

参考文献

[1] 刘子涵,席国君,雷广平.金属有机骨架在吸附式制冷/热泵中的应用[J].无机盐工业,2023,55(4):20-26,37.
[2] Lee R,Choi M,Yoon J,et al.Impacts of lighting and plug load variations on residential building energy consumption targeting zero energy building goals[J].Journal of Building Engineering,2023,75:106962.
[3] Mučková V,Kalús D,Koudelková D,et al.Analysis of the dynamic thermal barrier in building envelopes[J].Coatings,2023,13(3):635-648.
[4] Li Y,Zou T,Zhao J,et al.High-enthalpy aramid nanofiber aerogel-based composite phase change materials with enhanced thermal conductivity[J].Composites Communications,2023,40:101-114.
[5] Kamel J A,Mina E M,Elsabbagh A M M.New graphical method for assessing the integration of phase change materials into building envelope[J].Ain Shams Engineering Journal,2023,14(6):102-121.
[6] Brito J,Gomes M G.Special issue ‘building thermal envelope’[J].Energies,2020,13(5):1061-1078.
[7] 肖力光,王敬维.无机水合盐相变材料在建筑节能领域的应用[J].化工新型材料,2021,49(9):226-229.
[8] 吴丽梅,刘庆欣,王晓龙,等.相变储能材料研究进展[J].材料导报,2021,35(S1):501-506.
[9] Patil J R,Mahanwar P A,Sundaramoorthy E,et al.A review of the thermal storage of phase change material,morphology,synthesis methods,characterization,and applications of microencapsulated phase change material[J].Journal of Polymer Engineering,2023,43(4):354-375.
[10] 肖力光,冯铄.相变材料在建筑节能及其他领域的研究与应用[J].吉林建筑工程学院学报,2012,29(2):35-41.
[11] Zhang H,Zhang X,Pan D,et al.Preparation and application of high-temperature composite phase change materials[J].Journal of Energy Storage,2023,68:107-119.
[12] 沙飞翔,程国君,唐忠锋,等.相变材料微胶囊化封装技术的研究进展[J].化学世界,2023,64(3):141-148.
[13] Su W,Darkwa J,Zhou T,et al.Development of composite microencapsulated phase change materials for multi-temperature thermal energy storage[J].Crystals,2023,13(8):1158-1167.
[14] Wang K W,Yan T,Pan W G.Optimization strategies of microencapsulated phase change materials for thermal energy storage[J].Journal of Energy Storage,2023,68:107-124.
[15] 李国俭.相变储能材料开发与封装技术研究进展[J].热力发电,2023,52(2):23-31.
[16] 郝敏,李忠辉,吴秋芳,等.相变材料封装技术的研究进展[J].材料导报,2014,28(9):98-103.
[17] Podara C V,Kartsonakis I A,Charitidis C A.Towards phase change materials for thermal energy storage:classification,improvements and applications in the building sector[J].Applied Sciences,2021,11(4):1478-1490.
[18] Kocyigit F,Bayram M,Hekimoglu G,et al.Thermal energy saving and physico-mechanical properties of foam concrete incorporating form-stabilized basalt powder/capric acid based composite phase change material[J].Journal of Cleaner Production,2023,414:137617.
[19] Dora S,Barta R B,Mini K M.Study on foam concrete incorporated with expanded vermiculite/capric acid PCM-a novel thermal storage high-performance building material[J].Construction and Building Materials,2023,392:131-143.
[20] Ying H,Wang S,Lu Z,et al.Development and thermal response of concrete incorporated with multi-stage phase change materials-aggregates for application in seasonally frozen regions[J].Journal of Building Engineering,2023,71:106-122.
[21] Wang L,Wang L,Ju S,et al.Study on design,preparation,and performance of low-temperature rising concrete with energy storage aggregate[J].Structural Concrete,2023,152:58-69.
[22] Su Y,Cai J,Zhang J,et al.Research on cost control of prefabricated concrete building design stage[J].Journal of Physics:Conference Series.IOP Publishing,2023,2519(1):112-121.
[23] Li X J,Xie W J,Yang T,et al.Carbon emission evaluation of prefabricated concrete composite plates during the building materialization stage[J].Building and Environment,2023,232:110-124.
[24] Lajimi N,Ben Taher N,Boukadida N.Numerical simulation of heat and mass transfer of a wall containing micro-encapsulated phase change concrete(PCC)[J].Frontiers in Environmental Science,2023,10:973-985.
[25] Zhang Z,Zhang N,Yuan Y,et al.Thermal performance of a dynamic insulation-phase change material system and its application in multilayer hollow walls[J].Journal of Energy Storage,2023,62:106-112.
[26] Gao Y,Liu Z,Gao Y,et al.Employing the double-PCM (phase-change material) layer to improve the seasonal adaption of building walls:a comparative studies[J].Journal of Energy Storage,2023,66:107-114.
[27] Canım D S,Kalfa S M.Development of a new pumice block with phase change material as a building envelope component[J].Journal of Energy Storage,2023,61:106-118.
[28] Jeong Su-Gwang,Lee Jeonghun,Chang Seong Jin,et al.Thermal and structural behavior of thermal inertia-reinforced mortars for building envelope applications[J].Construction and Building Materials,2023,384:256-272.
[29] Haily E,Ousaleh H A,Zari N,et al.Use of a form-stable phase change material to improve thermal properties of phosphate sludge-based geopolymer mortar[J].Construction and Building Materials,2023,386:131-146.
[30] Baccega E,Bottarelli M,Cesari S.Addition of granular phase change materials (PCMs) and graphene to a cement-based mortar to improve its thermal performances[J].Applied Thermal Engineering,2023,229:120-134.
[31] Kumar G N,Ram V V,Parameshwaran R.Thermal and structural properties of cement mortar embedded with hybrid nanocomposite based phase change nanocapsules for building application[J].Construction and Building Materials,2023,385:131-152.
[32] Sarcinella A,de Aguiar J L B,Jesus C,et al.Thermal properties of PEG-based form-stable phase change materials (PCMs) incorporated in mortars for energy efficiency of buildings[J].Journal of Energy Storage,2023,67:107-117.
[33] Zuo P,Liu Z,Zhang H,et al.Formulation and phase change mechanism of capric acid/octadecanol binary composite phase change materials[J].Energy,2023,270:126-141.
[34] Luo Z,Liu X,Yang Q,et al.Numerical study on performance of porous brick roof using phase change material with night ventilation[J].Energy and Buildings,2023,286:297-312.
[35] Yu J,Yang H,Tao J,et al.Performance evaluation and optimum design of ventilation roofs with different positions of shape-stabilized PCM[J].Sustainability,2023,15(11):165-178.
Options
文章导航

/