开发与应用

损耗型吸波材料与水泥基复合吸波材料的制备及性能调控研究现状

展开
  • 郑州大学化工学院,郑州 450001
刘思遥(1998-),男,本科生,主要从事复杂资源综合利用研究。

收稿日期: 2022-10-29

  修回日期: 2023-09-28

  网络出版日期: 2024-02-28

基金资助

国家自然科学基金(51904273);河南省优势学科培育项目(222301420030);河南省高校科技创新人才(23HASTIT004)

Research status of preparation and performance regulation of loss-type wave-absorbing materials and cement-based composite wave-absorbing materials

Expand
  • School of Chemical Engineering,Zhengzhou University,Zhengzhou 450001

Received date: 2022-10-29

  Revised date: 2023-09-28

  Online published: 2024-02-28

摘要

针对目前日益恶化的电磁污染问题,吸波功能材料得到广泛应用。如何经济、高效、宏量制备高性能吸波材料,对功能建筑材料行业的发展具有重要意义。从损耗型吸波材料的吸波机理出发,在广泛总结对比磁损耗型、电阻损耗型、介电损耗型吸波材料制备的基础上,分析了水泥基复合吸波材料的制备技术及性能调控研究现状,并指出结构设计和材料复合石水泥基吸波材料的重要发展方向。

本文引用格式

刘思遥, 王旱雨, 刘兵兵, 韩桂洪, 黄艳芳, 孙虎 . 损耗型吸波材料与水泥基复合吸波材料的制备及性能调控研究现状[J]. 化工新型材料, 2024 , 52(2) : 288 -293 . DOI: 10.19817/j.cnki.issn1006-3536.2024.02.022

Abstract

In view of the current worsening problem of electromagnetic pollution,wave-absorbing functional materials are widely used in various fields.How to produce high performance wave-absorbing materials economically,efficiently and macroscopically is of great significance to the development of functional building materials industry.Starting from the absorption mechanism of the loss-type wave-absorbing materials,this paper analyzed the preparation technology of the cement-based composite wave-absorbing materials and the research status of the performance regulation based on the extensive summary and comparison of the preparations of the magnetic loss-type,resistance loss-type and dielectric loss-type wave-absorbing materials.It also pointed out the important development directions of the structural design and the material composite stone cement-based wave-absorbing materials.

参考文献

[1] 范芳岚,陈炯,李慧,等.铁氧体吸波材料的研究进展[J].辽宁化工,2021,50(12):1833-1839.
[2] 赵玉峰.环境电磁辐射工程抑制技术[J].环境工程,1983(1):41-43.
[3] 武志红,蒙真真,邓悦,等.分级多孔碳复合吸波材料研究进展[J].硅酸盐学报,2021,49(6):1125-1134.
[4] Zhang Y,Huang Y,Zhang T F,et al.Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J].Advanced Materials,2015,27(12):2049-2053.
[5] Meng F B,Liu X B.Hyperbranched copper phthalocyanine decorated Fe3O4 microspheres with extraordinary microwave absorption properties[J].RSC Advances,2015,5(10):7018-7022.
[6] 丁世敬,赵跃智.水泥基电磁吸波与屏蔽材料研究进展[J].材料导报,2014,28(S2):251-254.
[7] 赵栋梁,金奕含,罗曦,等.纳米铁氧体基核壳结构复合吸波材料的制备方法及研究进展[J].吉林大学学报(理学版),2021,59(2):397-407.
[8] Sergey N,Kharkovsky M,Fatih A,et al.Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens[J].Instrumentation and Measurement,2002,51(6):1210-1218.
[9] Pedersen P C,Johnson C C,Durney C H,et al.Microwave reflection and transmission measurements for pulmonary diagnosis and monitoring[J].IEEE Transactions on Bio-Medical Engineering,1978,25(1):40-48.
[10] 张华伟,王炜.吸波材料的最新研究现状及发展趋势[J].纺织导报,2021(6):95-96,98-99.
[11] Peng G,Xu J Y,Bai E L,et al.Microwave absorbing property of the nanoparticle concrete[J].IOP Conference Series:Materials Science and Engineering,2018,389(1):012036.
[12] Nam I W,Lee H K,Sim J B,et al.Electromagnetic characteristics of cement matrix materials with carbon nanotubes[J].ACI Materials Journal,2012,109(3):363-370.
[13] Wang Z J,Li K Z,Wang C.Freezing-thawing effects on electromagnetic wave reflectivity of carbon fiber cement based composites[J].Construction and Building Materials,2014,64:288-292.
[14] Chen J,Zhao D,Ge H Y,et al.Graphene oxide-deposited carbon fiber/cement composites for electromagnetic interference shielding application[J].Construction and Building Materials,2015,84:66-72.
[15] 林宗寿.无机非金属材料工学[M].武汉:武汉理工大学出版社,2012.
[16] 吕兴军.石墨烯/水泥基复合材料制备与吸波性能研究[D].大连:大连理工大学,2020.
[17] Huang Z D,Ma R,Zhou J,et al.Investigation on microstructures,electronic structures,electromagnetic properties and microwave absorption properties of Fe3Si/PPy composites[J].Journal of Alloys and Compounds,2021,873:159779.
[18] Feng A L,Hou T Q,Jia Z R,et al.Synthesis of a hierarchical carbon fiber@cobalt ferrite@manganese dioxide composite and its application as a microwave absorber[J].RSC Advances,2021,10(18):10510-10518.
[19] Huang L,Cheng L C,Pan S K,et al.Effects of Sr doping on the structure,magnetic properties and microwave absorption properties of LaFeO3 nanoparticles[J].Ceramics International,2020,17:27352-27361.
[20] Lei C L,Du Y W.Tunable dielectric loss to enhance microwave absorption properties of flakey FeSiAl/ferrite composites[J].Journal of Alloys and Compounds,2020,822:153674.
[21] Liu Z F,Xing H L,Liu Y,et al.Hydrothermally synthesized Zn ferrite/multi-walled carbon nanotubes composite with enhanced electromagnetic-wave absorption performance[J].Journal of Alloys and Compounds,2018,731:745-752.
[22] Liu B B,Zhang L,Zhang Y B,et al.Innovative methodology for co-treatment of mill scale scrap and manganese ore via oxidization roasting-magnetic separation for preparation of ferrite materials[J].Ceramics International,2021,47(5):6139-6153.
[23] Zhang L,Wang Y Z,Liu B B,et al.Characterization and property of magnetic ferrite ceramics with interesting multilayer structure prepared by solid-state reaction[J].Ceramics International,2020,47(8):10927-10939.
[24] Liu B B,Xue Y B,Han G H,et al.An alternative and clean utilisation of refractory high-phosphorusoolitic hematite:P for crop fertiliser and Fe for ferrite ceramic[J].Journal of Cleaner Production,2021,299(1):126889.
[25] Song Q.Graphene and MXenenanomaterials:toward high-performance electromagnetic wave absorption in gigahertz band range[J].Advanced Functional Materials,2020,30(31):2000475.
[26] Qiao J,Zhang X,Liu C,et al.Facile fabrication of Ni embedded TiO2/C core-shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption[J].Composites Part B Engineering,2020,200:108343.
[27] 刘顺华.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2014.
[28] Li B,Ji Z J,Xie S,et al.Electromagnetic wave absorption properties of carbon black/cement-based composites filled with porous glass pellets[J].Journal of Materials Science:Materials in Electronics,2019,30(7):1-10.
[29] Singh A P,Mishra M,Chandra A,et al.Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application[J].Nanotechnology,2011,22(46):465701.
[30] 李宝毅.水泥基平板吸波材料的制备与性能研究[D].大连:大连理工大学,2011.
[31] Qin F,Brosseau C.A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles[J].Journal of Applied Physics,2012,111(6):061301.
[32] 阮颖铮.雷达截面与隐身技术[M].北京:国防工业出版社,1998.
[33] Oldfield L C.Radar cross section analysis and control[J].The Aeronautical Journal,1991.
[34] 吕兴军.石墨烯/水泥基复合材料制备与吸波性能研究[D].大连:大连理工大学,2020.
[35] 管洪涛.石英和水泥基体平板吸波材料研究[D].大连:大连理工大学,2006.
[36] 李勉.MAX相涂层的制备及其作为复合材料界面层的研究[D].宁波:中国科学院大学(中国科学院宁波材料技术与工程研究所),2018.
[37] 过冬.一种掺杂石英的吸波水泥结构:CN106495617A[P].2017-03-15.
[38] 梅超.镍包铜粉-碱激发复合吸波材料性能研究[D].广州:广州大学,2020.
[39] 张秀芝.高性能水泥基电磁波吸收材料制备,机理及功能研究[D].南京:东南大学,2010.
[40] 肖培浩.包覆钡铁氧体的多孔陶粒集料及其在吸波混凝土中的应用[D].武汉:武汉理工大学,2016.
[41] 熊国宣,叶越华,左跃,等.锰锌铁氧体水泥基复合材料吸波性能的研究[J].建筑材料学报,2007(4):469-472.
[42] 王林.水泥基吸波材料的制备与性能[D].北京:北京工业大学,2008.
[43] 冀志江,解帅,杨洋,等.石膏填充蜂窝结构吸波材料的吸波性能[J].建筑材料学报,2016,19(1):185-190,197.
[44] 张秀芝,孙伟.铁氧体复合吸波剂对水泥基复合材料吸波性能的影响[J].硅酸盐学报,2010,38(4):590-596.
Options
文章导航

/