以乙基纤维素为壁材,电气石粉体为芯材,采用乳化-溶剂蒸发法制备电气石微胶囊,通过单因素实验分析了工艺条件对电气石微胶囊负载量和粒径的影响,利用扫描电子显微镜、傅里叶变换红外光谱仪、热分析仪和空气离子计数器等对微胶囊的微观形貌、结构、热稳定性、负载量以及负氧离子释放性能进行表征。结果表明:在芯壁质量比为1∶2、乳化剂含量为连续相溶剂的0.5%、搅拌速度为400r/min、溶剂挥发温度为57℃时,微胶囊负载量达到46.2%(质量分数),平均粒径为20.3μm;电气石粉体被乙基纤维素有效包覆,电气石微胶囊呈规则的球状,表面光滑,壳层上分布着大量的孔道。热重分析表明电气石微胶囊在200℃后才有明显的质量损失,热稳定性较好。负氧离子动态释放量大约15d达到平衡稳定状态,释放量约为850个/cm3。
The tourmaline microcapsules were prepared by emulsification-solvent evaporation method using ethyl cellulose as wall material and tourmaline powder as core material.The effects of different process conditions on the loading capacity and particle size of tourmaline microcapsules were verified by controlling single-factor tests.The microcapsules were characterized by scanning electron microscopy,Fourier infrared thermal analyzer and air ion counter to evaluate the microstructure,capacity,thermal stability as well as performance of releasing negative oxygen ions.The results proved that the loading capacity of tourmaline microcapsules was 46.2% (mass fraction),and the average particle size was 20.3μm at the ratio of core to shell of 1∶2,emulsifier dosage of 0.5%,stirring speed of 400r/min and solvent evaporation temperature of 57℃.The tourmaline powder was effectively coated with ethyl cellulose,and the tourmaline microcapsules were in a regular spherical shape with a smooth surface and a large number of pores distributed on the shell layer.The TG analysis revealed that the obvious mass loss of tourmaline microcapsules could be found only at the temperature higher than 200℃,indicating good thermal stability.The dynamic release of negative oxygen ions reached a stable equilibrium state within approximately 15 days,with a release amount of about 850 ions/cm3.
[1] Meng Junping,Liang Jinsheng,Liang Guangchuan,et al.Effects of tourmaline on microstructures and photocatalytic activity of TiO2/SiO2 composite powders[J].Transactions of Nonferrous Metals Society of China,2006,16:547-550.
[2] 莫尊理,孙豫,郭瑞斌,等.电气石的性能及应用研究进展[J].硅酸盐通报,2011,30(4):822-826.
[3] 柳坤鹏,胡金能,刘贺峻,等.电气石应用研究进展[J].中国粉体技术,2022,28(6):124-132.
[4] Liu J,Qin Y,Yuan S,et al.Investigation on the mechanism of water activated via tourmaline powder[J].Journal of Molecular Liquids,2021,332:115854.
[5] Liu L,Zhang T,Yu X,et al.Removal of Fe2+ and Mn2+ from polluted groundwater by insoluble humic acid/tourmaline composite particles[J].Materials,2022,15(9):3130.
[6] Wang D,Xu H,Ma J,et al.Strong promoted catalytic ozonation of atrazine at low temperature using tourmaline as catalyst:influencing factors,reaction mechanisms and pathways[J].Chemical Engineering Journal,2018,354:113-125.
[7] Wu Z,Wang H,Zheng K,et al.Incorporating strong polarity minerals of tourmaline with carbon nanotubes to improve the electrical and electromagnetic interference shielding properties[J].Journal of Physical Chemistry C,2012,116(23):12814-12818.
[8] Bi Y,Li R,Guo F,et al.Photocatalytic purification of vehicle exhaust using CeO2-Bi2O3 loaded on white carbon and tourmaline[J].Environmental Science and Pollution Research,2021,28(14):17724-17738.
[9] Qiu S,Ma F,Wo Y,et al.Study on the biological effect of tourmaline on the cell membrane of E.coli[J].Surface and Interface Analysis,2011,43(7):1069-1073.
[10] 王振光,梁可.浅谈负氧离子环境对人体健康的影响[J].建设科技,2022(21):24-26.
[11] 刘雪梅,陈刚,吴帅,等.新型硅丙乳液在水性无机富锌涂料中的应用[J].电镀与涂饰,2021,40(6):437-441.
[12] 韦仲华,金城凤鹤,王义安,等.电气石竹炭陶瓷复合材料的制备及对Cr(Ⅵ)的吸附性能研究[J].化工新型材料,2020,48(7):279-283.
[13] 项伟,杨宏林,冯云,等.β-环糊精包覆改性纳米电气石复合材料的制备及其应用[J].印染助剂,2019,36(1):28-31.
[14] 石林,袁少飞,王洪艳,等.负离子人造板研究现状及发展建议[J].浙江林业科技,2022,42(1):117-122.
[15] 张省委,陈志洋,王荣,等.溶剂蒸发法制备甲维盐微胶囊及其性能表征[J].农药,2019,58(7):487-490;514.
[16] 杨红,吴刚,陈红征,等.溶剂蒸发法制备油核/聚合物壳微胶囊[J].材料科学与工程学报,2009,27(6):859-861;828.
[17] 陈歌,曹立冬,许春丽,等.溶剂蒸发法制备丙硫菌唑微囊及其性能研究[J].中国农业科学,2021,54(4):754-767.
[18] Ye X,Gao Q,He E,et al.Graphene/carbonyl iron powder composite microspheres enhance electromagnetic absorption of 3D printing composites[J].Journal of Alloys and Compounds,2023,937:168443.
[19] 陈鑫,费良,殷允杰,等.溶剂挥发法制备聚苯乙烯壁材光致变色微胶囊[J].精细化工,2023,40(1):63-68.
[20] 李结瑶,罗文翰,黎汉清,等.农药微胶囊壁材设计研究进展[J].包装工程,2023,44(1):52-60.
[21] 程敬丽,张家栋,梁敏敏,等.吡丙醚乙基纤维素微胶囊的制备及其性能研究[J].农药,2021,60(12):882-886.
[22] 宋秀明,刘玉,徐翔宇,等.薄荷精油微胶囊的制备及性能表征[J].林产化学与工业,2022,42(4):47-53.
[23] 白雪,郭彦强,熊涛,等.基于乙基纤维素构建缓释型NaCl微胶囊及性能研究[J].应用化工,2020,49(12):3055-3059;3063.
[24] 陈杰,王孝鹏,崔弘妍.电气石/ABS复合材料的制备及性能[J].塑料,2021,50(2):19-22.
[25] 程晨,杜仕国,鲁彦玲,等.乙基纤维素微胶囊红磷的制备及性能表征[J].化工进展,2019,38(4):1846-1852.