综述与专论

MOFs材料吸附与分离NO研究进展

展开
  • 桂林理工大学化学与生物工程学院,桂林 541004
胡洁(1998-),女,硕士研究生,主要从事金属有机材料研究,E-mail:jiehuskku@163.com。

收稿日期: 2022-09-08

  修回日期: 2023-08-27

  网络出版日期: 2023-12-27

基金资助

广西创新驱动发展专项(科技重大专项)(桂科AA18118010)

Research progress of metal-organic frameworks for NO adsorption and separation

Expand
  • College of Chemistry and Bioengineering,Guilin University of Technology,Guilin 541004

Received date: 2022-09-08

  Revised date: 2023-08-27

  Online published: 2023-12-27

摘要

大气污染物NOx的吸附分离富集是较为简便并可实现其资源化的潜在净化去除途径。金属有机框架(MOFs)材料是一类气体储存和吸附分离性能优异的新型多孔材料,具有发达的孔道、较高的设计性和可调节性。自Cu-BTC MOFs材料被发现具有医用NO储存和释放性能以来,MOFs材料拓展应用于吸附分离NO的研究日趋广泛深入。主要介绍了近年来MOFs材料在NO吸附分离领域的研究进展。首先对不同种类MOFs材料的NO吸附能力和稳定性等特性进行了介绍,然后对当前MOFs材料用于吸附分离NO的研究进行了概括,最后对MOFs材料吸附和选择性分离NO的机理进行了总结,并提出了当前研究所面临的挑战。

本文引用格式

胡洁, 李豪, 穆轶乐, 张哲, 阮乐, 李磊, 唐富顺 . MOFs材料吸附与分离NO研究进展[J]. 化工新型材料, 2023 , 51(12) : 67 -73 . DOI: 10.19817/j.cnki.issn1006-3536.2023.12.050

Abstract

The adsorption,separation and enrichment of atmospheric pollutant NOx are relatively simple potential purification and removal pathways for resource utilization of NO.Metal-organic frameworks (MOFs) materials are a new class of porous materials with excellent performance in gas storage and adsorption-separation,featuring well-developed pore channels,high designability and tunability.Since the discovery of Cu-BTC MOFs materials with medical NO storage and release properties,the research of MOFs materials to expand the application of NO adsorption-separation has become more and more extensive.This paper mainly reviewed the research progress of MOFs materials in the field of NO adsorption-separation in recent years.The properties such as NO adsorption capacity and stability of different types of MOFs were firstly introduced,and then the current research on MOFs materials for NO adsorption and selective separation was outlined.Finally,the mechanism of NO adsorption and selective separation by MOFs materials was summarized,and the challenges of current research were presented.

参考文献

[1] Bahamonde Ana,Beretta Alessandra,Avila Pedro,et al.An experimental and theoretical investigation of the behavior of a monolithic Ti-V-W-sepiolite catalyst in the reduction of NOx with NH3[J].Industrial & Engineering Chemistry Research,1996,35(8):2516-2521.
[2] Zheng Shoutian,Wu Tao,Chou Chengtsung,et al.Development of composite inorganic building blocks for MOFs[J].Journal of the American Chemical Society,2012,134(10):4517-4520.
[3] Cui Jiehu,Lu Zhenzhong,Li Yizhi,et al.A microporous metal-organic framework with FeS2 topology based on [Zn66-O)] cluster for reversible sensing of small molecules[J].Chemical Communications,2012,48(64):7967-7969.
[4] Farha Omar K,Eryazici Ibrahim,Jeong Nak Cheon,et al.Metal-organic framework materials with ultrahigh surface areas:is the sky the limit?[J].Journal of the American Chemical Society,2012,134(36):15016-15021.
[5] Zhao Dan,Yuan Daqiang,Zhou Hongcai.The current status of hydrogen storage in metal-organic frameworks[J].Energy & Environmental Science,2008,1(2):222-235.
[6] Zhu Wei,Xiao Shuning,Zhang Dieqing,et al.Highly efficient and stable Au/CeO2-TiO2 photocatalyst for nitric oxide abatement:potential application in flue gas treatment[J].Langmuir,2015,31(39):10822-10830.
[7] Lee Jeongyong,Farha Omar K,Roberts John,et al.Metal-organic framework materials as catalysts[J].Chemical Society Reviews,2009,38(5):1450-1459.
[8] Xiao Bo,Wheatley Paul S,Zhao Xuebo,et al.High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework[J].Journal of the American Chemical Society,2007,129(5):1203-1209.
[9] Zhou Hongcai,Long Jeffrey R,Yaghi Omar M.Introduction to metal-organic frameworks[J].Chemical Reviews,2012,112(2):673-674.
[10] Yuan Shuai,Feng Liang,Wang Kecheng,et al.Stable metal-organic frameworks:design,synthesis,and applications[J].Advanced Materials,2018,30(37):1704303.
[11] Dan-Hardi Meenakshi,Serre Christian,Frot Theo,et al.A new photoactive crystalline highly porous titanium(Ⅳ) dicarboxylate[J].Journal of the American Chemical Society,2009,131(31):10857-10859.
[12] Yuan Shuai,Liu Tianfu,Feng Dawei,et al.A single crystalline porphyrinic titanium metal-organic framework[J].Royal Society of Chemistry,2015,6(7):3926-3930.
[13] Bueken Bart,Vermoortele Frederik,Vanpoucke Danny E P,et al.A flexible photoactive titanium metal-organic framework based on a [Ti33-O)O2(COO)6] cluster[J].Angewandte Chemie International Edition,2015,54(47):13912-13917.
[14] Pinto Rosana V,Wang Sujing,Tavares Sergio R,et al.Tuning cellular biological functions through the controlled release of NO from a porous Ti-MOF[J].Angewandte Chemie International Edition,2020,59(13):5135-5143.
[15] Bai Yan,Dou Yibo,Xie Linhua,et al.Zr-based metal-organic frameworks:design,synthesis,structure,and applications[J].Chemical Society Reviews,2016,45(8):2327-2367.
[16] Cavka Jasmina Hafizovic,Jakobsen Søren,Olsbye Unni,et al.A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J].Journal of the American Chemical Society,2008,130(42):13850-13851.
[17] Islamoglu Timur,Goswami Subhadip,Li Zhanyong,et al.Postsynthetic tuning of metal-organic frameworks for targeted applications[J].Accounts of Chemical Research,2017,50(4):805-813.
[18] Chen Chengxia,Wei Zhangwen,Jiang Jijun,et al.Dynamic spacer installation for multirole metal-organic frameworks:a new direction toward multifunctional MOFs achieving ultrahigh methane storage working capacity[J].Journal of the American Chemical Society,2017,139(17):6034-6037.
[19] Howarth Ashlee J,Liu Yangyang,Li Peng,et al.Chemical,thermal and mechanical stabilities of metal-organic frameworks[J].Nature Reviews Materials,2016,1(3):15018.
[20] Abid Hussein Rasool,Pham Gia Hung,Ang Ha-Ming,et al.Adsorption of CH4 and CO2 on Zr-metal organic frameworks[J].Journal of Colloid and Interface Science,2012,366(1):120-124.
[21] Loiseau Thierry,Serre Christian,Huguenard Clarisse,et al.A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J].Chemistry,2004,10(6):1373-1382.
[22] Ferey Gerard,Mellot-Draznieks Caroline,Serre Christian,et al.Crystallized frameworks with giant pores:are there limits to the possible?[J].Accounts of Chemical Research,2005,38(4):217-225.
[23] Bourrelly Sandrine,Llewellyn Philip L,Serre Christian,et al.Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47[J].Journal of the American Chemical Society,2005,127(39):13519-13521.
[24] Llewellyn Philip L,Maurin Guillaume,Devic Thomas,et al.Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction,microcalorimetry,and molecular simulation[J].Journal of the American Chemical Society,2008,130(38):12808-12814.
[25] Lyubchyk Andriy,Esteves Isabel A A C,Cruz Fernando J A L,et al.Experimental and theoretical studies of supercritical methane adsorption in the MIL-53(Al) metal organic framework[J].The Journal of Physical Chemistry C,2011,115(42):20628-20638.
[26] Barthelet Karin,Marrot Jerome,Riou Didier,et al.A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics[J].Angewandte Chemie-International Edition,2002,41(2):281-284.
[27] Barth Benjamin,Mendt Matthias,Poppl Andreas,et al.Adsorption of nitric oxide in metal-organic frameworks:low temperature IR and EPR spectroscopic evaluation of the role of open metal sites[J].Microporous and Mesoporous Materials,2015,216:97-110.
[28] Khan Arafat Hossain,Barth Benjamin,Hartmann Martin,et al.Nitric oxide adsorption in MIL-100(Al) MOF studied by solid-state NMR[J].The Journal of Physical Chemistry C,2018,122(24):12723-12730.
[29] McKinlay A C,Eubank J F,Wuttke S,et al.Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal-organic frameworks[J].Chemistry of Materials,2013,25(9):1592-1599.
[30] Mellot-Draznieks Caroline,Serre Christian,Surble Suzy,et al.Very large swelling in hybrid frameworks:A combined computational and powder diffraction study[J].Journal of the American Chemical Society,2005,127(46):16273-16278.
[31] Eubank Jarrod F,Wheatley Paul S,Lebars Gaëlle,et al.Porous,rigid metal(Ⅲ)-carboxylate metal-organic frameworks for the delivery of nitric oxide[J].APL Materials,2014,2(12):124112.
[32] Rosi Nathaniel L,Kim Jaheon,Eddaoudi Mohamed,et al.Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units[J].Journal of the American Chemical Society,2005,127(5):1504-1518.
[33] Caskey Stephen R,Wong-Foy Antek G,Matzger Adam J.Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J].Journal of the American Chemical Society,2008,130(33):10870-10871.
[34] Dietzel Pascal D C,Besikiotis Vasileios,Blom Richard.Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide[J].Journal of Materials Chemistry,2009,19(39):7362-7370.
[35] McKinlay Alistair C,Xiao Bo,Wragg David S,et al.Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in Porous Metal Organic Frameworks[J].Journal of the American Chemical Society,2008,130(31):10440-10444.
[36] Liu Wenting,Li Jinyan,Ni Zhaoping,et al.Incomplete spin crossover versus antiferromagnetic behavior exhibited in three-dimensional porous Fe(Ⅱ)-bis(tetrazolate) frameworks[J].Crystal Growth & Design,2012,12(3):1482-1488.
[37] Grunert C Matthias,Schweifer Johannes,Weinberger Peter,et al.Structure and physical properties of [μ-tris(1,4-bis(tetrazol-1-yl)butane-N4,N4′)iron(Ⅱ) bis(hexafluorophosphate),a new Fe(Ⅱ) spin-crossover compound with a three-dimensional threefold interlocked crystal lattice[J].Inorganic Chemistry,2004,43(1):155-165.
[38] Oktawiec Julia,Jiang Henry Z H,Turkiewicz Ari B,et al.Influence of the primary and secondary coordination spheres on nitric oxide adsorption and reactivity in cobalt(ⅱ)-triazolate frameworks[J].Chemical Science,2021,12(43):14590-14598.
[39] Li Jianrong,Yu Jiamei,Lu Weigang,et al.Porous materials with pre-designed single-molecule traps for CO2 selective adsorption[J].Nature Communications,2013,4(1):1-8.
[40] Zhang Zhijuan,Zhao Yonggang,Gong Qihan,et al.MOFs for CO2 capture and separation from flue gas mixtures:the effect of multifunctional sites on their adsorption capacity and selectivity[J].Chemical Communications,2013,49(7):653-661.
[41] Lowe A,Chittajallu P,Gong Q H,et al.Storage and delivery of nitric oxide via diazeniumdiolated metal organic framework[J].Microporous and Mesoporous Materials,2013,181:17-22.
[42] Jensen Stephanie,Tan Kui,Feng Liang,et al.Porous Ti-MOF-74 Framework as a Strong-Binding Nitric Oxide Scavenger[J].Journal of the American Chemical Society,2020,142(39):16562-16568.
[43] Meng Guanghao,Song Xuedan,Ji Min,et al.Molecular simulation of adsorption of NO and CO2 mixtures by a Cu-BTC metal organic framework[J].Current Applied Physics,2015,15(9):1070-1074.
[44] Sun Weizhen,Lin Lichiang,Peng Xuan,et al.Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2 and NOx from flue gases[J].AIChE Journal,2014,60(6):2314-2323.
[45] Rowsell J L C,Yaghi O M.Metal-organic frameworks:a new class of porous materials[J].Microporous and Mesoporous Materials,2004,73(1-2):3-14.
[46] Yang Y,Zhang N,Xue M,et al.Impact of soil organic matter on the distribution of polycyclic aromatic hydrocarbons(PAHs) in soils[J].Environmental Pollution,2010,158(6):2170-2174.
[47] Tian Yunqi,Cai Chenxin,Ji Yong,et al.[Co5(im)10·2MB]:a metal-organic open-framework with zeolite-like topology[J].Angewandte Chemie-International Edition,2002,41(8):1384-1386.
[48] Stock N,Biswas S.Synthesis of metal-organic frameworks (MOFs):routes to various MOF topologies,morphologies,and composites[J].Chemical Reviews,2012,112(2):933-969.
[49] Keefer L K.Fifty years of diazeniumdiolate research.from laboratory curiosity to broad-spectrum biomedical advances[J].ACS Chemical Biology,2011,6(11):1147-1155.
[50] Seabra A B,Duran N.Nitric oxide-releasing vehicles for biomedical applications[J].Journal of Materials Chemistry,2010,20(9):1624-1637.
[51] Biswas D,Deschamps J R,Keefera L K,et al.Nitrogen-bound diazeniumdiolated amidines[J].Chemical Communications,2010,46(31):5799-5801.
[52] Cattaneo D,Warrender S J,Duncan M J,et al.Tuning the nitric oxide release from CPO-27 MOFs[J].RSC Advances,2016,6(17):14059-14067.
[53] Khan Arafat Hossain,Peikert Katharina,Hoffmann Frank,et al.Nitric oxide adsorption in Cu3btc2-Type MOFs--physisorption and chemisorption as NONOates[J].The Journal of Physical Chemistry C,2019,123(7):4299-4307.
[54] Haikal R R,Hua C,Perry J J,et al.Controlling the uptake and regulating the release of nitric oxide in microporous solids[J].ACS Applied Materials & Interfaces,2017,9(50):43520-43528.
[55] Li Jianrong,Sculley Julian,Zhou Hongcai.Metal-organic frameworks for separations[J].Chemical Reviews,2012,112(2):869-932.
[56] Bonino F,Chavan S,Vitillo J G,et al.Local structure of CPO-27-Ni metallorganic framework upon dehydration and coordination of NO[J].Chemistry of Materials,2008,20(15):4957-4968.
Options
文章导航

/