锂离子电池硅负极材料具有比容量高、电压平台低等优势, 粘结剂的结构和类型对硅负极的电化学储能性能具有较大影响。选取不同结构的粘结剂(聚丙烯酸、聚偏氟乙烯、羧甲基纤维素钠、聚丙烯酰胺)分别与硅/多孔石墨烯复合材料混合制浆涂布, 组装成锂离子半电池。在相同的电流密度下, 研究不同粘结剂对硅/多孔石墨烯复合负极材料的电化学储能影响。测试结果表明, 以聚丙烯酰胺作为粘结剂的硅/多孔石墨烯复合负极材料, 首次放电循环比容量为2623mAh/g, 初始库伦效率为84.4%, 循环100次后比容量仍保持为1462mAh/g。相较于其他粘结剂, 聚丙烯酰胺的三维交联网络结构具有较强的机械强度, 可以通过其共价网络结构来缓解Si负极体积膨胀造成的容量衰减现象。本研究可为锂离子电池硅复合负极材料粘结剂的选择和设计提供依据。
Silicon anode materials for lithium-ion batteries have the advantages of high specific capacity and low voltage plateau, and the structure and type of binders have a significant impact on the electrochemical energy storage performance of silicon anodes.In this paper, polyacrylic acid (PAA), polyvinylidene fluoride (PVDF), sodium carboxymethyl cellulose (CMC), and polyacrylamide (PAM) were selected and mixed with Si/pG composite, respectively, to prepare slurry coating for assembling lithium-ion half-cells.The effects of different binders on the electrochemical energy storage of Si/pG anode were studied under the same current density.The test results showed that for Si/pG-PAM anode, the specific capacity of the first discharge cycle was 2623mAh·g-1 with an initial Coulomb efficiency of 84.4%, and the specific capacity remained at 1462mAh·g-1 after 100 cycles.Compared with other binders, the 3D cross-linked network of PAM had strong mechanical strength, and its covalent network structure could alleviate the capacity decay caused by the volume expansion of the silicon anode.This study provided research bases for the design and selection of binder for Si composite anode for lithium-ion batteries.
[1] Lv F,Liu K X,Wang Z Y,et al.Ultraviolet-cured polyethylene oxide-based composite electrolyte enabling stable cycling of lithium battery at low temperature[J].Journal of Colloid And Interface Science,2021,596:257-266.
[2] Li J,Sun Q,Wang Z J,et al.Rational design of binder-free Sn film anode for lithium ion batteries[J].Materials Express,2016,6(6):509-514.
[3] Shimauchi Y,Ohmori S,Ikemoto S,et al.Ex-situ electron microscopy study of solid electrolyte interphase formed by charge-discharge reaction of silicon negative electrode in lithium-ion secondary battery:microstructure of materials[J].Materials Transactions,2021,62(8):1079-1088.
[4] Zhuo Y,Sun H,Uddin M,et al.An additive-free silicon anode in nanotube morphology as a model lithium ion battery material[J].Electrochimica Acta,2021,388.
[5] 刘铁峰,张奔,盛欧微,等.硅负极黏结剂的研究进展[J].高等学校化学学报,2021,42(5):1446-1463.
[6] 新型,石墨烯复合硅碳负极材料及其高能量密度锂离子电池研究获进展[J].化工新型材料,2021,49(8):281.
[7] Chen H,Wu Z Z,Su Z,et al.A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green,universal,and dual-functional binder for high-performance silicon anode and sulfur cathode[J].Journal of Energy Chemistry,2021,62:127-135.
[8] Ling H Y,Hencz L K,Chen H,et al.Sustainable okra gum for silicon anode in lithium-ion batteries[J].Sustainable Materials and Technologies,2021,28(42):e00283.
[9] Shi L,Wu Z G,Liu Y M,et al.A compared investigation of different biogum polymer binders for silicon anode of lithium-ion batteries[J].Ionics,2021,27(prepublish):1829-1836.
[10] Chen H,Wu Z Z,Su Z,et al.A mechanically robust self-healing binder for silicon anode in lithium ion batteries[J].Nano Energy,2021,81:105654.
[11] Shi Z X,Jiang S S,Zhao Y Y,et al.Restorable neutralization of poly(acrylic acid) binders toward balanced processing properties and cycling performance for silicon anodes in lithium-ion batteries[J].ACS Applied Materials & Interfaces,2020,12(52):57932-57940.
[12] Taskin O S,Yuca N,Papavasiliou J,et al.Interconnected conductive gel binder for high capacity silicon anode for Li-ion batteries[J].Materials Letters,2020,273(4):127918.
[13] Park J,Suh S,Jeong,et al.New approach for the high electrochemical performance of silicon anode in lithium-ion battery:a rapid and large surface treatment using a high-energy pulsed laser[J].Journal of Power Sources,2021,491:229573.
[14] Lee H A,Skin M,Kim J,et al.Designing adaptive binders for microenvironment settings of silicon anode particles[J].Advanced Materials,2021,33(13):2007460.
[15] Wu M Y,Wen Y,Park S,et al.Toward an ideal polymer binder design for high-capacity battery anodes,[J].Abstracts of Papers of The American Chemical Society,2013,135:12048-12056.
[16] Li Z H,Ji J P,Wu Q,et al.A new battery process technology inspired by partially carbonized polymer binders,[J].Nano Energy,2020,67:104234.
[17] Zhao Y M,Yu F S,Li S C,et al.Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries[J].Infomat,2021,3(5):42.
[18] Gao S L,Sun F Y,Brady A,et al.Ultra-efficient polymer binder for silicon anode in high-capacity lithium-ion batteries[J].Nano Energy,2020,73:104804.
[19] Sun H T,Mei l,Liang J F,et al.Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage[J].Science,2017,365:599-604.