综述与专论

菌丝复合材料的制备及应用研究进展

展开
  • 1.北华大学吉林省木质材料科学与工程重点实验室,吉林 132013;
    2.燕山大学机械工程学院,秦皇岛 066004;
    3.北华大学理学院,吉林 132013;
    4.吉林省农业科学院,长春 130033
赵志成(1999-),男,硕士研究生,研究方向为生物质材料与工程,E-mail:15931273926@163.com。

收稿日期: 2022-10-10

  修回日期: 2022-11-29

  网络出版日期: 2023-03-29

基金资助

国家自然科学基金(32001260和12104015);吉林省科技发展计划项目(20210203134SF)

Research progress on preparation and application of mycelium composites

Expand
  • 1. Key Laboratory of Wooden Materials Science and Engineering,Beihua University, Jilin 132013;
    2. School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004;
    3. College of Science,Beihua University,Jilin 132013;
    4. Jilin Academy of Agricultural Sciences, Changchun 130033

Received date: 2022-10-10

  Revised date: 2022-11-29

  Online published: 2023-03-29

摘要

菌丝复合材料是由真菌菌丝体与其基质复合组装而成,使用菌丝体作为天然粘合剂,从而合成一种绿色环保的新型菌丝基复合材料,其优势是使用绿色的生物组装合成方法,成本低廉易于制造、低能耗、可生物降解。阐述了以真菌菌丝作为生物质载体,与无机碳材料(碳纳米管、氧化石墨烯)、金属/金属氧化物、农林生物质材料的生物组装技术,并总结了菌丝复合材料在吸附、包装、建筑、电化学和光催化等相关领域的应用,并结合现有研究展望了菌丝复合材料的发展趋势。

本文引用格式

赵志成, 李鹏, 林琳, 张健, 关法春 . 菌丝复合材料的制备及应用研究进展[J]. 化工新型材料, 2023 , 51(3) : 73 -78 . DOI: 10.19817/j.cnki.issn1006-3536.2023.03.013

Abstract

Mycelium composites are composed of fungal mycelia and their matrixes.Mycelium is used as a natural adhesive to synthesize a new type of green mycelium composite.Its advantage is the use of green biological assembly synthesis method,low cost,easy to manufacture,low energy consumption,and biodegradability.This article expounded the biological assembly technology of fungal mycelium as a biomass carrier with inorganic carbon materials (carbon nanotubes,graphene oxide),metal/metal oxide,agriculture and forestry biomass material,and reviewed the application of mycelium composites in related fields such as adsorption,packaging,construction,electrochemistry and photocatalysis.Based on the existing research,the development trend of mycelium composites was discussed.

参考文献

[1] Li H,Liu L,Cui J,et al.High-efficiency adsorption and regeneration of methylene blue and aniline onto activated carbon from waste edible fungus residue and its possible mechanism[J].RSC Advances,2020,10(24):14262-14273.
[2] Italia H,Patel I,Shah J.Experimental study of bacterial self-healing effect on concrete:a review[J].Journal of Civil Engineering and Environmental Technology,2016,3(1):78-81.
[3] Girometta C,Picco A M,Baiguera R M,et al.Physico-mechanical and thermodynamic properties of mycelium-based biocomposites:a review[J].Sustainability,2019,11(1):281.
[4] 高雪华,李娜.菌丝复合材料在设计中的应用研究[J].冶金与材料,2020,40(6):2.
[5] Jones M,Mautner A,Luenco S,et al.Engineered mycelium composite construction materials from fungal biorefineries:a critical review[J].Materials & Design,2020,187:108397.
[6] Zou D,Gao L.Preparation and properties of fungal mycelium based on garden waste[J].Science Discovery,2020,8(2):43.
[7] 竹文坤.基于微生物诱导微纳结构单元组装制备功能纳米复合材料的研究[D].合肥:中国科学技术大学,2015.
[8] 石晓飞,姜沁源,李润,等.碳纳米管水平阵列的结构控制生长:进展与展望[J].化工学报,2021,72(1):30.
[9] Zhu W,Yi L,Dai L,et al.Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control[J].Chemical Engineering Journal,2018,339:214-222.
[10] Zhou H,Li X,Hu B,et al.Assembly of fungal mycelium-carbon nanotube composites and their application in pyrene removal[J].Journal of Hazardous Materials,2021,415(13):125743.
[11] Li Y,Zou G,Zhang X,et al.Bio-inspired and assembled fungal hyphae/carbon nanotubes aerogel for water-oil separation[J].Nanotechnology,2019,30(27):275601.
[12] Dong C,Lu J,Qiu B,et al.Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions[J].Applied Catalysis B:Environmental,2018,222:146-156.
[13] Sun Y,Qi W,Chen C,et al.Interaction between Eu(Ⅲ) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques[J].Environmental Science & Technology,2012,46(11):6020-6027.
[14] Li Y,Li L,Chen T,et al.Bioassembly of fungal hypha/graphene oxide aerogel as high performance adsorbents for U(Ⅵ) removal[J].Chemical Engineering Journal,2018,347:407-414.
[15] Li Y,Zou G,Yang S,et al.Bioassembly of fungal hyphae/graphene oxide composite as high performance adsorbents for U(Ⅵ) removal[J].Applied Surface Science,2018,458:226-235.
[16] Akhavan O,Ghaderi E.Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner[J].Carbon,2012,50(5):1853-1860.
[17] Lei J,Guo Q,Yin D,et al.Bioconcentration and bioassembly of N/S co-doped carbon with excellent stability for supercapacitors[J].Applied Surface Science,2019,488:316-325.
[18] Lian Y,Bai X,Li X,et al.Novel fungal hyphae/Fe3O4 and N-TiO2/N composite for adsorption and photocatalysis[J].RSC Advances,2017,7(12):6842-6848.
[19] Ren Y,Zhang M,Zhao D.Synthesis and properties of magnetic Cu(Ⅱ) ion imprinted composite adsorbent for selective removal of copper[J].Desalination,2008,228(1-3):135-149.
[20] Ding C,Cheng W,Sun Y,et al.Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides[J].Journal of Hazardous Materials,2015,295(15):127-137.
[21] 文永林,刘攀,汤琪.农林废弃物吸附脱除废水中重金属研究进展[J].化工进展,2016,35(4):8.
[22] Cheng H,Sun Y,Wang X,et al.Hierarchical porous carbon fabricated from cellulose-degrading fungus modified rice husks:ultrahigh surface area and impressive improvement in toluene adsorption[J].Journal of Hazardous Materials,2020,392:122298.
[23] Cheng H,Ye G,Wang X,et al.Micro-mesoporous carbon fabricated by phanerochaete chrysosporium pretreatment coupling with chemical activation:promoting effect and toluene adsorption performance[J].Journal of Environmental Chemical Engineering,2021,9(2):105054.
[24] Sisti L,Gioia C,Totaro G,et al.Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials[J].Industrial Crops and Products,2021,170:113742.
[25] 邓敬轩,周润杰,单晓红,等.携菌新型生物质基材用于微污染水体治理[J].中国给水排水,2021,37(11):8.
[26] Alemu D,Tafesse M,Mondal A K.Mycelium-based composite:the future sustainable biomaterial[J].International Journal of Biomaterials,2022,2022.
[27] Li Y,Zou G,Yang S,et al.Integration of bio-inspired adsorption and photodegradation for the treatment of organics-containing radioactive wastewater[J].Chemical Engineering Journal,2019,364:139-145.
[28] Yu C,Zhang L,Syed S,et al.The formation of fungus-serpentine aggregation and its immobilization of lead(Ⅱ) under acidic conditions[J].Applied Microbiology and Biotechnology,2021,105(5):2157-2169.
[29] Jack J,Huggins T M,Huang Y,et al.Production of magnetic biochar from waste-derived fungal biomass for phosphorus removal and recovery[J].Journal of Cleaner Production,2019,224:100-106.
[30] Abhijith R,Ashok A,Rejeesh C R.Sustainable packaging applications from mycelium to substitute polystyrene:a review[J].Materials Today:Proceedings,2018,5(1):2139-2145.
[31] Jose J,Uvais K N,Sreenadh T S,et al.Investigations into the development of a mycelium biocomposite to substitute polystyrene in packaging applications[J].Arabian Journal for Science and Engineering,2021,46(3):2975-2984.
[32] Jones M,Bhat T,Kandare E,et al.Thermal degradation and fire properties of fungal mycelium and mycelium-biomass composite materials[J].Scientific Reports,2018,8(1):1-10.
[33] Joshi K,Meher M K,Poluri K M.Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications[J].ACS Applied Bio Materials,2020,3(4):1884-1892.
[34] Appels F V W,Camere S,Montalti M,et al.Fabrication factors influencing mechanical,moisture-and water-related properties of mycelium-based composites[J].Materials & Design,2019,161:64-71.
[35] Ziegler A R,Bajwa S G,Holt G A,et al.Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers[J].Applied Engineering in Agriculture,2016,32(6):931-938.
[36] Jones M,Huynh T,Dekiwadia C,et al.Mycelium composites:a review of engineering characteristics and growth kinetics[J].Journal of Bionanoscience,2017,11(4):241-257.
[37] Jones M,Mautner A,Luenco S,et al.Engineered mycelium composite construction materials from fungal biorefineries:a critical review[J].Materials & Design,2020,187:108397.
[38] Elsacker E,Vandelook S,Wylick A V,et al.A comprehensive framework for the production of mycelium-based lignocellulosic composites[J].Science of the Total Environment,2020,725:138431.
[39] Gauvin F,Tsao V,Vette J,et al.Physical properties and hygrothermal behavior of mycelium-based composites as foam-like wall insulation material[C].Barcelona,Spain:4th International Conference on Bio-Based Building Material-Barcelona School of Building Construction (EPSEB),2021.
[40] Zhang X,Hu J,Fan X,et al.Naturally grown mycelium-composite as sustainable building insulation materials[J].Journal of Cleaner Production,2022,342:130784.
[41] Pelletier M G,Holt G A,Wanjura J D,et al.An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates[J].Industrial Crops and Products,2013,51:480-485.
[42] 雷佳.基于微生物富集制备菌丝基掺杂的碳材料及其电化学性能研究[D].绵阳:西南科技大学,2018.
[43] Atalay F E,Kaya H,Bingol A,et al.La-based material for energy storage applications[J].Acta Physica Polonica A,2017,131(3):453-456.
[44] Hao J,Huang Y,He C,et al.Bio-templated fabrication of three-dimensional network activated carbons derived from mycelium pellets for supercapacitor applications[J].Scientific Reports,2018,8(1):1-9.
[45] Lian J,Xiong L,Cheng R,et al.Ultra-high nitrogen content biomass carbon supercapacitors and nitrogen forms analysis[J].Journal of Alloys and Compounds,2019,809:151664.
[46] Xu Xiaoguang,Yang Ying,Jin Han,et al.Filamentous fungal in situ biosynthesis of heterogeneous Au/Cd0.5Zn0.5S nano-photocatalyst:a macroscopic assembly strategy for preparing composite mycelial pellets with visible light degradation ability[J].Journal of Hazardous Materials,2021,406:124797.
[47] Saravanakumar Kandasamy,Hu Xiaowen,Vijayakumar Sekar,et al.Statistical optimization to augment the photocatalytic reduction of brilliant blue G-250 using the biogenic semiconductor nanorods:an ecosafety approach[J].Journal of Cluster Science,2020,31(4):709-718.
Options
文章导航

/