科学研究

基于PA/OBC/EG复合相变材料的锂离子电池热管理研究

展开
  • 河南工业大学土木工程学院,郑州450001
王海涛(1979-),男,博士,副教授,主要研究方向为相变储能技术,E-mail:haitao-wangshd@163.com。

收稿日期: 2022-06-30

  修回日期: 2022-09-08

  网络出版日期: 2022-11-30

基金资助

河南省科技攻关项目(192102310229);河南工业大学青年骨干教师项目(21420069)

Thermal management of lithium-ion batteries based on PA/OBC/EG composite phase change materials

Expand
  • College of Civil Engineering,Henan University of Technology,Zhengzhou 450001

Received date: 2022-06-30

  Revised date: 2022-09-08

  Online published: 2022-11-30

摘要

相变材料电池热管理系统具有潜热高、结构简单、无能耗等优势,但是相变材料存在热导率低和易泄露的问题。以烯烃嵌段共聚物(OBC)为支撑材料,以石蜡(PA)为相变材料,以膨胀石墨(EG)为导热添加剂,采用熔融共混法制备了PA/OBC/EG高热导定形复合相变材料,分析了复合相变材料的形状稳定性及导热性能。结果表明:烯烃嵌段共聚物的加入提高了复合相变材料(CPCM)的热稳定性,但对其相变温度没有太大影响。加入20% OBC时CPCM的泄漏率保持在0.5%以下,表现出优异的热稳定性。EG为3%时CPCM的热导率比PA/OBC提高了5.6倍。设计了一种基于CPCM的圆柱形锂离子电池冷却系统,在3C的放电倍率下,基于CPCM的电池最高温度保持在46.5℃以内,与自然冷却相比电池最高温度降低了34.2℃。

本文引用格式

王海涛, 李建, 李皖皖 . 基于PA/OBC/EG复合相变材料的锂离子电池热管理研究[J]. 化工新型材料, 2022 , 50(11) : 141 -146 . DOI: 10.19817/j.cnki.issn1006-3536.2022.11.028

Abstract

The thermal management system of phase change material battery has the advantages of high latent heat,simple structure and no energy consumption.However,the drawbacks of phase change material are low thermal conductivity and easy leakage.In this paper,using olefin block copolymer OBC as the support material,PA as the phase change material,and EG as the thermo-conductive additive,a PA/OBC/EG high thermal conductivity shaped composite phase change material (CPCM) was prepared by melt blending method.The shape stability and thermal conductivity of the CPCM were analyzed.The addition of olefin block copolymer improved the thermal stability,but did not significantly affect its phase change temperature.The leakage rate of CPCM remained below 0.5% when adding 20% OBC,and the CPCM presented excellent thermal stability.In the presence of 3% EG,the thermal conductivity of the composite was improved by 5.6 times compared with PA/OBC.A cylindrical Li-ion battery cooling system based on CPCM was designed.The results showed that at a discharge multiplier of 3C the maximum temperature of battery based on CPCM remained within 46.5℃ that was reduced by 34.2℃ compared with natural cooling.

参考文献

[1] Scrosati B,Garche J.Lithium batteries:status,prospects and future[J].Journal of Power Sources,2010,195(9):2419-2430.
[2] 罗明昀,凌子夜,方晓明,等.基于相变储热技术的电池热管理系统研究进展[J].化工进展,2022,41(3):1594-1607.
[3] Choudhari V G,Dhoble A S,Sathe T M.A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle[J].Journal of Energy Storage,2020,32:101729.
[4] Feng X,Fang M,He X,et al.Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J].Journal of Power Sources,2014,255:294-301.
[5] Yang X,Zhang Z,Cai Z,et al.Experimental investigation on room-temperature flexible composite phase change materials in thermal management of power battery pack[J].Applied Thermal Engineering,2022:118748.
[6] Bose P,Amirtham V A.A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material[J].Renewable and Sustainable Energy Reviews,2016,65:81-100.
[7] 金露,谢鹏,赵彦琦,等.基于相变材料的电动汽车电池热管理研究进展[J].材料导报,2021,35(21):21113-21126.
[8] Akula R,Balaji C.Thermal management of 18650 Li-ion battery using novel fins-PCM-EG composite heat sinks[J].Applied Energy,2022,316:119048.
[9] 黄菊花,甄亚琴,曹铭,等.PW/EG/WMCNTs/CF复合相变材料的制备及性能研究[J].化工新型材料,2020,48(2):70-74,79.
[10] Ali H M,Janjua M M,Sajjad U,et al.A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J].International Journal of Heat and Mass Transfer,2019,135:649-673.
[11] Samimi F,Babapoor A,Azizi M,et al.Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers[J].Energy,2016,96:355-371.
[12] 刘军,卓威,张文灿,等.基于PCM/泡沫铜/多孔热管复合相变材料的动力电池热管理研究[J].功能材料,2018,49(7):7070-7075,7081.
[13] Wu T,Wang C,Hu Y,et al.Research on novel battery thermal management system coupling with shape memory PCM and molecular dynamics analysis[J].Applied Thermal Engineering,2022,210:118373.
[14] Tang Y,Lin Y,Jia Y,et al.Improved thermal properties of stearyl alcohol/high density polyethylene/expanded graphite composite phase change materials for building thermal energy storage[J].Energy and Buildings,2017,153:41-49.
[15] Qian T,Li J,Feng W.Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material[J].Energy Conversion and Management,2017,143:96-108.
[16] Bing N,Wu G,Yang J,et al.Thermally induced flexible phase change composites with enhanced thermal conductivity for solar thermal conversion and storage[J].Solar Energy Materials and Solar Cells,2022,240:111684.
[17] Cao J,Ling Z,Lin X,et al.Flexible composite phase change material with enhanced thermophysical,dielectric,and mechanical properties for battery thermal management[J].Journal of Energy Storage,2022,52:104796.
[18] Lv Y,Yang X,Li X,et al.Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins[J].Applied Energy,2016,178:376-382.
[19] Wu W,Liu J,Liu M,et al.An innovative battery thermal management with thermally induced flexible phase change material[J].Energy Conversion and Management,2020,221:113145.
[20] Sato N.Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J].Journal of Power Sources,2001,99(1-2):70-77.
[21] Bernardi D,Pawlikowski E,Newman J.A general energy balance for battery systems[J].Journal of the Electrochemical Society,1985,132(1):5.
[22] Huang Y H,Cheng W L,Zhao R.Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials[J].Energy Conversion and Management,2019,182:9-20.
[23] Purlis E,Salvadori V O.Bread baking as a moving boundary problem.part 1:mathematical modelling[J].Journal of Food Engineering,2009,91(3):428-433.
Options
文章导航

/