科学研究

自支撑Co/Fe(OH)x纳米片电极的制备及电催化析氧性能研究

展开
  • 1.西南石油大学化学化工学院,成都 610500;
    2.宜宾丝丽雅集团有限公司,宜宾 644000
易洪亮(1995-),男,硕士研究生,研究方向为电化学催化剂研究、析氢反应、析氧反应,E-mail:yhl@stu.swpu.edu.cn。

收稿日期: 2021-11-21

  修回日期: 2022-03-02

  网络出版日期: 2022-06-06

Fabrication and electrocatalytic activity of self-supported Co/Fe(OH)x nanosheet electrode for OER

Expand
  • 1. School of Chemistry and Chemical Engineering,Southwest Petroleum University, Chengdu 610500;
    2. Yibin Grace Group Co.,Ltd.,Yibin 644000

Received date: 2021-11-21

  Revised date: 2022-03-02

  Online published: 2022-06-06

摘要

贵金属催化剂IrO2、RuO2对电解水析氧反应(OER)有优异的催化性能,但昂贵的成本限制了它们的大规模应用,因此开发优质廉价的非贵金属OER电催化剂是必要的。以Co20Al80合金条带为原料,首先通过电化学脱合金法制备钴纳米片(Co-NS),再用化学浸渍法引入Fe元素,得到催化剂Co/Fe(OH)x纳米片电极[Co/Fe(OH)x-NS]。通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)和X射线光电子能谱(XPS)等手段对催化剂的形貌、晶体结构及表面价态进行了表征,并在1mol/L KOH溶液中测试催化剂的OER催化性能,所制Co/Fe(OH)x-NS仅需235mV的电位就达到10mA/cm2的电流密度。

本文引用格式

易洪亮, 李雪梅, 夏长林, 梁梓灏, 兰高力, 朱晓琪, 葛性波 . 自支撑Co/Fe(OH)x纳米片电极的制备及电催化析氧性能研究[J]. 化工新型材料, 2022 , 50(5) : 154 -159 . DOI: 10.19817/j.cnki.issn1006-3536.2022.05.032

Abstract

Noble metal-based materials such as IrO2,RuO2 possess extraordinary catalytic performance toward oxygen evolution reaction (OER),but the high cost restrained their large-scale application.It is necessary to develop OER catalysts based on non-noble metal elements.A Co/Fe(OH)x nanosheets (Co/Fe(OH)x-NS) from Co20Al80 alloy precursor as electrode material for OER was presented.Firstly,electrochemical dealloying process was utilized to convert the Co20Al80 into cobalt nanosheets (Co-NS),then the Co-NS was processed with impregnation method,and obtained the Co/Fe(OH)x-NS.Scanning electron microscope (SEM),X-ray diffractometer (XRD) and X-ray photoelectron spectroscope (XPS) was utilized to reveal the surface morphology,crystalline structure and valence state of as-prepared samples,and the electrochemical performance toward OER was tested in 1mol/L KOH solution.The Co/Fe(OH)x-NS only required the overpotential of 235mV to attain the current density of 10mA/cm2 for OER.

参考文献

[1] Meng A,Zhang H,Huangfu B,et al.Bimetal nickel-cobalt phosphide directly grown on commercial graphite substrate by the one-step electrodeposition as efficient electrocatalytic electrode[J].Progress in Natural Science:Materials International,2020,30(4):461-468.
[2] Wang C,Chai L,Tian Q,et al.A simple preparation of Co0.75Fe0.25 hydrous oxide nanoparticles as active electrocatalysts for water oxidation reaction[J].International Journal of Energy Research,2020,44(9):7820-7830.
[3] Moniz S J A,Shevlin S A,Martin D J,et al.Visible-light driven heterojunction photocatalysts for water splitting-a critical review[J].Energy & Environmental Science,2015,8(3):731-759.
[4] Hong W T,Risch M,Stoerzinger K A,et al.Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis[J].Energy & Environmental Science,2015,8(5):1404-1427.
[5] Han X,Niu Y,Yu C,et al.Ultrafast construction of interfacial sites by wet chemical etching to enhance electrocatalytic oxygen evolution[J].Nano Energy,2020,69:104367.
[6] Huang L,Chen D,Luo G,et al.Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting[J].Advanced Materials,2019,31(28):1901439.
[7] Trotochaud L,Young S L,Ranney J K,et al.Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts:the role of intentional and incidental iron incorporation[J].Journal of the American Chemical Society,2014,136(18):6744-6753.
[8] Wang H Y,Hsu Y Y,Chen R,et al.Ni3+-induced formation of active NiOOH on the spinel Ni-Co oxide surface for efficient oxygen evolution reaction[J].Advanced Energy Materials,2015,5(10):1500091.
[9] Zhou W,Wu X J,Cao X,et al.Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution[J].Energy & Environmental Science,2013,6(10):2921-2924.
[10] Mendoza-Garcia A,Zhu H,Yu Y,et al.Controlled anisotropic growth of Co-Fe-P from Co-Fe-O nanoparticles[J].Angewandte Chemie,2015,127(33):9778-9781.
[11] Wang T,Wang C,Jin Y,et al.Amorphous Co-Fe-P nanospheres for efficient water oxidation[J].Journal of Materials Chemistry A,2017,5(48):25378-25384.
[12] Wu F,Guo X,Hao G,et al.Self-supported hollow Co(OH)2/NiCo sulfide hybrid nanotube arrays as efficient electrocatalysts for overall water splitting[J].Journal of Solid State Electrochemistry,2019,23(9):2627-2637.
[13] Yu C,Han X,Liu Z,et al.An effective graphene confined strategy to construct active edge sites-enriched nanosheets with enhanced oxygen evolution[J].Carbon,2018,126:437-442.
[14] Jin H,Mao S,Zhan G,et al.Fe incorporated α-Co(OH)2 nanosheets with remarkably improved activity towards the oxygen evolution reaction[J].Journal of Materials Chemistry A,2017,5(3):1078-1084.
[15] Malik B,Anantharaj S,Karthick K,et al.Magnetic CoPt nanoparticle-decorated ultrathin Co(OH)2 nanosheets:an efficient bi-functional water splitting catalyst[J].Catalysis Science & Technology,2017,7(12):2486-2497.
[16] Liu Z,Yu C,Han X,et al.CoMn layered double hydroxides/carbon nanotubes architectures as high-performance electrocatalysts for the oxygen evolution reaction[J].ChemElectroChem,2016,3(6):906-912.
[17] Corrigan D A,Conell R S,Fierro C A,et al.In-situ moessbauer study of redox processes in a composite hydroxide of iron and nickel[J].Journal of Physical Chemistry,1987,91(19):5009-5011.
[18] Trotochaud L,Young S L,Ranney J K,et al.Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts:the role of intentional and incidental iron incorporation[J].Journal of the American Chemical Society,2014,136(18):6744-6753.
[19] Jin H,Mao S,Zhan G,et al.Fe incorporated α-Co(OH)2 nanosheets with remarkably improved activity towards the oxygen evolution reaction[J].Journal of Materials Chemistry A,2017,5(3):1078-1084.
[20] Liu W,Du K,Liu L,et al.One-step electroreductively deposited iron-cobalt composite films as efficient bifunctional electrocatalysts for overall water splitting[J].Nano Energy,2017,38:576-584.
[21] Babar P,Lokhande A,Shin H H,et al.Cobalt iron hydroxide as a precious metal-free bifunctional electrocatalyst for efficient overall water splitting[J].Small,2018,14(7):1702568.
[22] Erlebacher J,Aziz M J,Karma A,et al.Evolution of nanoporosity in dealloying[J].Nature,2001,410(6827):450-453.
[23] Feng J X,Xu H,Dong Y T,et al.[J].Angewandte Chemie International Edition,2016,55(11):3694-3698.
[24] Han X,Niu Y,Yu C,et al.Ultrafast construction of interfacial sites by wet chemical etching to enhance electrocatalytic oxygen evolution[J].Nano Energy,2020,69:104367.
[25] Cao Z,Zhou T,Chen Y L,et al.A trimodal porous cobalt-based electrocatalyst for enhanced oxygen evolution[J].Advanced Materials Interfaces,2019,6(17):1900381.
[26] McIntyre N S,Johnston D D,Coatsworth L L,et al.X-ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum[J].Surface and Interface Analysis,1990,15(4):265-272.
[27] Nai J,Tian Y,Guan X,et al.Pearson's principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages[J].Journal of the American Chemical Society,2013,135(43):16082-16091.
[28] Nai J,Tian Y,Guan X,et al.Pearson's principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages[J].Journal of the American Chemical Society,2013,135(43):16082-16091.
Options
文章导航

/