开发与应用

环境友好型超疏水/超双疏表面研究进展

展开
  • 上海工程技术大学服装学院,上海 201620
徐伟(1997-),男,硕士研究生,主要从事无机纳米材料及其功能纺织材料的应用研究,E-mail:1471464805@qq.com。

收稿日期: 2020-08-04

  修回日期: 2021-08-24

  网络出版日期: 2021-12-31

基金资助

上海市自然科学基金项目面上项目(21ZR1426200);国家自然科学基金青年科学基金项目(51703123);上海工程技术大学人才行动计划腾飞计划(2018RC46-2018)

Research progress on environment friendly super hydrophobic/super bisphobic surfaces

Expand
  • College of Fashion,Shanghai University of Engineering Science,Shanghai 201620

Received date: 2020-08-04

  Revised date: 2021-08-24

  Online published: 2021-12-31

摘要

从多尺度微观粗糙结构构建、低表面能物质改性等方面综述了环境友好型超疏水/超双疏材料制备的研究现状,主要包括基于价格低廉天然纳米材料或可降解材料的微观粗糙结构构建、低氟及无氟低表面能物质改性、以水为溶剂的绿色超疏水/超双疏涂层体系等。价格低廉的环保材料、绿色反应体系及简单的制备方法是未来超疏水/超双疏表面的一个重要研究方向。

本文引用格式

徐伟, 徐丽慧, 沈勇, 柳杨春, 袁小玲, 万晶 . 环境友好型超疏水/超双疏表面研究进展[J]. 化工新型材料, 2021 , 49(12) : 259 -263 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.12.055

Abstract

The research status of environment friendly super hydrophobic/super bisphobic materials was summarized based on multiscale microrough structure and low surface energy material modification,mainly including the construction of microrough structure with cheap natural nanomaterials or biodegradable materials,low surface energy modification with fluorine-low and fluorine-free materials,and green super hydrophobic/super bisphobic coating systems using water as solvent.Low cost environment friendly materials,green reaction systems and simple preparation methods were the important research direction for future super hydrophobic/super bisphobic surfaces.

参考文献

[1] Lu Y,Sathasivam S,Song J L,et al.Repellent materials robust self-cleaning surfaces that function when exposed to either air or oil[J].Science,2015,347(6226):1132-1135.
[2] Liu S H,Liu X J,Latthe S S,et al.Self-cleaning transparent superhydrophobic coatings through simple sol-gel processing of fluoroalkylsilane[J].Applied Surface Science,2015,351:897-903.
[3] Wang Z Y,Tang Y Y,Li B A.Excellent wetting resistance and anti-fouling performance of pvdf membrane modified with superhydrophobic papillae-like surfaces[J].Journal of Membrane Science,2017,540:401-410.
[4] Xue C H,Guo X J,Ma J Z,et al.Fabrication of robust and antifouling superhydrophobic surfaces via surface-initiated atom transfer radical polymerization[J].ACS Applied Materials & Interfaces,2015,7(15):8251-8259.
[5] Wang B,Liang W X,GUO Z G,et al.Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation:a new strategy beyond nature[J].Chemical Society Review,2015,44(1):336-361.
[6] Cao C Y,Ge M Z,Huang J Y,et al.Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation[J].Journal of Materials Chemistry A,2016,4(31):12179-12187.
[7] Zhao X,Yu B,Zhang J P.Transparent and durable superhydrophobic coatings for anti-bioadhesion[J].Journal of Colloid & Interface Science,2017,501:222-230.
[8] Leng B X,Shao Z Z,De With G,et al.Superoleophobic cotton textiles[J].Langmuir,2009,25(4):2456-2460.
[9] Aulin C,Yun S H,Wagberg L,et al.Design of highly oleophobic cellulose surfaces from structured silicon templates[J].ACS Applied Materials & Interfaces,2009,1(11):2443-2452.
[10] Zhao H,Law K Y,Sambhy V.Fabrication,surface properties,and origin of superoleophobicity for a model textured surface[J].Langmuir,2011,27(10):5927-5935.
[11] Deng X,Mamen L,Butt H J,et al.Candle soot as a template for a transparent robust superamphiphobic coating[J].Science,2011,335(6064):67-70.
[12] Jin H,Kettunen M,Laiho A,et al.Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil[J].Langmuir,2011,27(5):1930-1934.
[13] Guo J,Resnick P,Efimenko K,et al.Alternative fluoropolymers to avoid the challenges associated with perfluorooctanoic acid[J].Industrial & Engineering Chemistry Research,2008,47(3):502-508.
[14] Darmanin T,Gutittard F.Superoleophobic surfaces with short fluorinated chains?[J].Soft Matter,2013,9(25):5982.
[15] Schutzius T M,Bayer I S,Qin J,et al.Water-based,nonfluorinated dispersions for environmentally benign,large-area,superhydrophobic coatings[J].ACS Applied Materials & Interfaces,2013,5(24):13419-13425.
[16] Liu Q,Tian J H,Cui W,et al.Carbon nanotubes decorated with cop nanocrystals:a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution[J].Angewandte Chemie,2014,26(26):6828-6832.
[17] Li J H,Weng R.Preparation of nano-SiO2/amino-modified polysiloxane hybrid superhydrophobic coating and thermal-stability characterization[J].Journal of Wuhan University of Technology (Materials Science Edition),2014,29(1):35-39.
[18] Fu Q,Rama Rao G V,Basame S B,et al.Reversible control of free energy and topography of nanostructured surfaces[J].Journal of the American Chemical Society,2004,126(29):8904-8905.
[19] Dong J,Zhu Q,Wei Q Y,et al.A comparative study about superamphiphobicity and stability of superamphiphobic coatings based on palygorskite[J].Applied Clay Science,2018,165:8-16.
[20] Zhang J P,Gao Z Q,Li L X,et al.Waterborne nonfluorinated superhydrophobic coatings with exceptional mechanical durability based on natural nanorods[J].Advanced Materials Interfaces,2017,4(19):1700723.
[21] Qu M N,Ma X R,He J M,et al.Facile selective and diverse fabrication of superhydrophobic,superoleophobic-superhydrophilic and superamphiphobic materials from kaolin[J].ACS Applied Materials & Interfaces,2016,9(1):1011-1020.
[22] Xue Z X,Sun Z X,Cao Y Z,et al.Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil-water separation[J].RSC Advances,2013,3(45):23432.
[23] Yohe S T,Colson Y L,Grinstaff M W.Superhydrophobic materials for tunable drug release:using displacement of air to control delivery rates[J].Journal of the American Chemical Society,2012,134(4):2016-2019.
[24] Darmanin T,Tarrade J,Celia E,et al.Superoleophobic meshes with relatively low hysteresis and sliding angles by electropolymerization:importance of polymer-growth control[J].ChemPlusChem,2013,79(3):382-386.
[25] Millionis A,Dang K,Prato M,et al.Liquid repellent nanocomposites obtained from one-step water-based spray[J].Journal of Materials Chemistry A,2015,3(24):12880-12889.
[26] Darmanin T,Guittard F.Enhancement of the superoleophobic properties of fluorinated pedop using polar glycol spacers[J].The Journal of Physical Chemistry C,2014,118(46):26912-26920.
[27] Conder J M,Hoke R A,Wolf W D,et al.Are pfcas bioaccumulative?a critical review and comparison with regulatory criteria and persistent lipophilic compounds[J].Environmental Science & Technology,2008,42(4):995-1003.
[28] Wang J G,Mao G P,Ober C K,et al.Liquid crystalline,semifluorinated side group block copolymers with stable low energy surfaces:synthesis,liquid crystalline structure,and critical surface tension[J].Macromolecules,1997,30(7):1906-1914.
[29] Honda K,Morita M,Sakata O,et al.Effect of surface molecular aggregation state and surface molecular motion on wetting behavior of water on poly(fluoroalkyl methacrylate) thin films[J].Macromolecules,2010,43(1):454-460.
[30] Honda K,Yamamoto I,Moritaa M,et al.Effect of α-substituents on molecular motion and wetting behaviors of poly(fluoroalkyl acrylate) thin films with short fluoroalkyl side chains[J].Polymer,2014,55(24):6303-6308.
[31] Zhang Q H,Wang Q Y,Jiang J X,et al.Microphase structure,crystallization behavior,and wettability properties of novel fluorinated copolymers poly(perfluoroalkyl acrylate-co-stearyl acrylate) containing short perfluorohexyl chains[J].Langmuir,2015,31(16):4752-4760.
[32] Jiang J X,Zhang G F,Wang Q Y,et al.Novel fluorinated polymers containing short perfluorobutyl side chains and their super wetting performance on diverse substrates[J].ACS Applied Materials & Interfaces,2016,8(16):10513-10523.
[33] Yang M P,Liu W Q,Jiang C,et al.Facile fabrication of robust fluorine-free superhydrophobic cellulosic fabric for self-cleaning,photocatalysis and UV shielding[J].Cellulose,2019,26(13):8153-8164.
[34] Xue C H,Zhang Z D,Zhang J,et al.Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO2 nanoparticles and polydimethylsiloxane[J].Journal of Materials Chemistry A,2014,2(36):15001.
[35] Sheng J,Xu Y,Yu J H,et al.Robust fluorine-free superhydrophobic amino-silicone oil/SiO2 modification of electrospun polyacrylonitrile membranes for waterproof-breathable application[J].ACS Applied Materials & Interfaces,2017,9(17):15139-15147.
[36] Mates J E,Ibrahim R,Vera A,et al.Environmentally-safe and transparent superhydrophobic coatings[J].Green Chemistry,2016,18(7):2185-2192.
[37] Rao Q Q,Chen K L,Wang C X.Facile preparation of self-healing waterborne superhydrophobic coatings based on fluoroalkyl silane-loaded microcapsules[J].RSC Advances,2016,6(59):53949-53954.
[38] Baidya A,Das S K,Robin H,et al.Fabrication of a waterborne fabrication of a waterborne durable superhydrophobic material functioning in air and under oil[J].Advanced Materials Interfaces,2018,5(11):1701523.
[39] Ye H,Zhu L Q,Li W P,et al.Simple spray deposition of the water-based superhydrophobic coatings with high stability for flexible applications[J].Journal of Materials Chemistry,2017,5(20):9882-9890.
[40] Liu M M,Hou Y Y,Li J,et al.Robust and self-repairing superamphiphobic coating from all-water-based spray[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,553:645-651.
[41] Li Y B,Hu T,Li B C et al.Totally waterborne and highly durable superamphiphobic coatings for anti-icing and anticorrosion[J].Advanced Materials Interfaces,2019,6(23):1901225.
[42] Zhou H,Wang H X,Niu H T,et al.A waterborne coating system for preparing robust,self-healing,superamphiphobic surfaces[J].Advanced Functional Materials,2017,27(14):1604261.
[43] Zhao D D,Pan M W,Yuan J F,et al.A waterborne coating for robust superamphiphobic surfaces[J].Progress in Organic Coatings,2020,138:105368.
[44] Tu Y Y,Zou H L,Lin S D,et al.Understanding the mechanism for building woven fabrics with wettability ranging from superhydrophobic to superamphiphobic via an aqueous process[J].Reactive and Functional Polymers,2017,119:75-81.
Options
文章导航

/