[1] Yang X,Sun Y,Yang J,et al.Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure[J].Thin-Walled Structures,2018,125:1-11.
[2] Liu S,Zhang Y,Liu P.New analytical model for heat transfer efficiency of metallic honeycomb structures[J].International Journal of Heat and Mass,2008,51:6254-6258.
[3] Hong S,Pan J,Tyan T,et al.Quasi-static crush behavior of aluminum honeycomb specimens under compression dominant combined loads[J].International Journal of Plastics Technology,2006,22:73-109.
[4] Dharmasena K P,Wadley H N G,Xue Z,et al.Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading[J].International Journal of Impact Engineering,2008,35:1063-1074.
[5] Côté F,Deshpande VS,Fleck N A,et al.The out-of-plane compressive behavior of metallic honeycombs[J].Materials Science and Engineering A-stuctural Materials Properties Microstructure and Processing,2004,380:272-280.
[6] Queheillalt D T,Wadley H N G.Titanium alloy lattice truss structures[J].International Journal of Mechanics and Materials in Design,2009,30:1966-1975.
[7] Xie Zonghong,Zhao Wei,Wang Xinnian,et al.Low-velocity impact behaviour of titanium honeycomb sandwich structures[J].Journal of Sandwich Structures and Materials,2017,20:1009-1027.
[8] Toribio M G,Spearing S M.Compressive response of notched glass-fiber epoxy/honeycomb sandwich panels[J].Composites Part A-Applied Science and Manufacturing,2001,32:859-870.
[9] Shahdin A,Mezeix L,Bouvet C,et al.Fabrication and mechanical testing of glass fiber entangled sandwich beams:a comparison with honeycomb and foam sandwich beams[J].Composite Structures,2009,90:404-412.
[10] Rodriguez-Ramirez J D D,Castanie B,Bouvet C.Experimental and numerical analysis of the shear nonlinear behaviour of Nomex honeycomb core:application to insert sizing[J].Composite Structures,2018,193:121-139.
[11] Garam K,Ronald S,Waterloo T.Investigating the effects of fluid intrusion on Nomex honeycomb sandwich structures with carbon fiber facesheets[J].Composite Structures,2018,206:535-549.
[12] Foo C C,Chai G B,Seah L K.Mechanical properties of Nomex material and Nomex honeycomb structure[J].Composite Structures,2007,80:588-594.
[13] Han B,Wang W,Zhang Z,et al.Performance enhancement of sandwich panels with honeycomb-corrugation hybrid core[J].Theoretical and Applied Mechanics Letters,2016,6:54-59.
[14] Han B,Qin K,Yu B,et al.Honeycomb-corrugation hybrid as a novel sandwich core for significantly enhanced compressive performance[J].International Journal of Mechanics and Materials in Design,2016,93:271-282.
[15] Chen Q,Shi Q,Signetti S,et al.Plastic collapse of cylindrical shell-plate periodic honeycombs under uniaxial compression:experimental and numerical analyses[J].International Journal of Mechanical Sciences,2016,111-112:125-133.
[16] Malek S,Gibson L.Effective elastic properties of periodic hexagonal honeycombs[J].Mechanics of Materials,2015,91(1):226-240.
[17] Michailidis P A.Superelasticity and stability of a shape memory alloy hexagonal honeycomb under in-plane compression[J].International Journal of Solids and Structures,2009,46:2724-2738.
[18] Hohe J,Becker W.Effective mechanical behavior of hyperelastic honeycombs and two-dimensional model foams at finite strain[J].International Journal of Mechanical Sciences,2003,45:891-913.
[19] Huang J,Gong X,Zhang Q,et al.In-plane mechanics of a novel zero Poisson's ratio honeycomb core[J].Composites Part B-Engineering,2016,89:67-76.
[20] Correa D M,Seepersad C C,Haberman M R.Mechanical design of negative stiffness honeycomb materials[J].Integrating Materials and Manufacturing Innovation,2015,4:10.
[21] Karagiozova D,Yu T X.Post-collapse characteristics of ductile circular honeycombs under in-plane compression[J].International Journal of Mechanical Sciences,2005,47:570-602.
[22] Russell B P,Deshpande V S,Fleck N A.Quasi-static compression of carbon fibre square honeycombs[J].Experimental Analysis of Nano & Engineering Materials and Structures,2007:131-135.
[23] Hu L,Yu T X,Gao Z Y,et al.The inhomogeneous deformation of polycarbonate circular honeycombs under in-plane compression[J].International Journal of Mechanical Sciences,2008,50:1224-1236.
[24] Heimbs S,Schmeer S,Middendorf P,et al.Strain rate effects in phenolic composites and phenolic-impregnated honeycomb structures[J].Composites Science and Technology,2007,67:2827-2837.
[25] Chen D,Yang L.Analysis of equivalent elastic modulus of asymmetrical honeycomb[J].Composite Structures,2011,93:767-773.
[26] Zhu H,Thorpe S M,Windle A H.The effect of cell irregularity on the high strain compression of 2D Voronoi honeycombs[J].International Journal of Solids and Structures,2006,43:1061-1078.
[27] Qiao J,Chen C.In-plane crushing of a hierarchical honeycomb[J].International Journal of Solids and Structures,2012,85-86:57-66.
[28] 杨晓强,赵玉宇,吴建伟,等.中温固化阻燃结构胶膜流变特性与蜂窝粘结性能[J].化学与黏合,2012,34(5):17-21.
[29] Grimes G C.The adhesive-honeycomb relationship[J].Applied Polymer Symposia,1996(3):157-190.
[30] Okada R,Kortschot M T.The role of the resin fillet in the delamination of honeycomb sandwich structures[J].Composites Science and Technology,2002,62(14):1811-1819.
[31] 原崇新,李敏,顾轶卓,等.蜂窝夹层结构真空袋共固化工艺过程实验研究[J].复合材料学报,2008,25(2):51-62.
[32] 刘建华.夹层结构中蜂窝芯塌陷分析及改进工艺研究[D].天津:天津大学,2013.
[33] 陈蔚,成理,叶宏军,等.Nomex蜂窝夹层复合材料的成型工艺研究[J].玻璃钢/复合材料,2017(7):70-73.
[34] 郑义珠,顾轶卓,孙志杰,等.Nomex蜂窝夹层结构真空袋共固化过程蜂窝变形[J].复合材料学报,2009,26(4):29-35.
[35] 王强华.蜂窝复合材料液体成型技术[J].玻璃钢,2008(3):35-38.
[36] Allen G.Analysis and design of structural sandwich panel[M].Oxford UK:Pergamon Press,1969.
[37] Gibson L J,Ashby M E.Cellular solids:structure and properties[M].Second edition.Cambridge UK:Cambridge University Press,1997.
[38] Vinson J R.The behavior of sandwich structures of isotropic and composite materials[M].USA:Technomic Publishing Company,1999.
[39] Sun G,Huo X,Chen D,et al.Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression[J].Materials and Design,2017,133:154-168.
[40] Li Z,Wang T,Jiang Y,et al.Design-oriented crushing analysis of hexagonal honeycomb core under in-plane compression[J].Composite Structures,2018,187:129-138.
[41] Okumura D,Ohno N,Noguchi H.Post-buckling analysis of elastic honeycombs subject to in-plane biaxial compression[J].International Journal of Solids and Structures,2002,39:3487-3503.
[42] Cricrì G,Perrella M,Calì C.Honeycomb failure processes under in-plane loading[J].Composites Part B-Engineering,2013,45:1079-1090.
[43] Hua Lingling,You Fanfan,Yu Tongxi.Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs[J].Materials and Design,2013,46:511-523.
[44] Pan S D,Wu L Z,Sun Y G,et al.Longitudinal shear strength and failure process of honeycomb cores[J].Composite Structures,2006,72:42-46.
[45] 栾旭,梁军,王超,等.金属蜂窝夹层板疲劳行为的试验研究[J].材料工程,2008(Z1):149-152.
[46] 栾旭.金属蜂窝夹层板疲劳和冲击力学性能研究[D].哈尔滨:哈尔滨工业大学,2009.
[47] 韩杰才,梁军,王超,等.高超声速飞行器两类典型防热材料的性能表征与评价[J].力学进展,2009,39(6):695-715.
[48] Abbadi A,Azari Z,Belouettar S,et al.Modelling the fatigue behaviour of composites honeycomb materials (aluminium/aramide fibre core) using four-point bending tests[J].International Journal of Fatigue,2010,32:1739-1747.
[49] Abbadi A,Tixier C,Gilgert J,et al.Experimental study on the fatigue behaviour of honeycomb sandwich panels with artificial defects[J].Composite Structures,2015,120:394-405.
[50] Ivañez Inés,Sanchez-Saez Sonia.Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core[J].Composite Structures,2013,106:716-723.
[51] Besant T,Davies G A O,Hitchings D.Finite element modeling of low velocity impact of composite sandwich panels[J].Composites Part A-Applied Science and Manufacturing,2001,32:1189-1196.
[52] Buitrago B L,Santiuste C,Sánchez-Sáez S,et al.Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact[J].Composite Structures,2010,92:2090-2096.