开发与应用

碳基柔性压阻式压力传感器研究进展

展开
  • 1.中国航天员科研训练中心人因工程重点实验室,北京 100094;
    2.北京化工大学材料科学与工程学院,北京 100029
尹锐(1971-),男,博士,高级工程师,主要从事载人航天系统工程和舱外航天服的研制工作。

收稿日期: 2020-07-29

  修回日期: 2021-10-19

  网络出版日期: 2021-12-31

Research progress on carbon-based flexible piezoresistive pressure sensor

Expand
  • 1. National Key Laboratory of Human Factors Engineering,China Astronaut Research and Training Center,Beijing 100094;
    2. College of Materials Science and Engineering, Beijing University of Chemical Technology,Beijing 100029

Received date: 2020-07-29

  Revised date: 2021-10-19

  Online published: 2021-12-31

摘要

作为可穿戴电子器件的核心部分,柔性压力传感器备受学术界与工业界的关注。由于碳纳米材料具有优异的导电性能和机械性能,且价廉易得、形态丰富,以碳纳米材料为敏感活性材料的柔性压力传感器一直是人们研究的热点。综述了各种碳基柔性压阻式压力传感器的研究进展,包括炭黑、碳纳米管、石墨烯和复合碳材料,指明复合碳材料的协同效应利于高效构建空间导电网络,有助于人们在敏感活性材料制备工艺和柔性传感器器件性能等方面取得进一步突破。

本文引用格式

尹锐, 张瑞明, 张均, 姜志国, 刘梁, 陈树刚 . 碳基柔性压阻式压力传感器研究进展[J]. 化工新型材料, 2021 , 49(12) : 223 -226 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.12.047

Abstract

Flexible pressure sensors,as the key part of wearable electronic devices,have attracted much attention from academia and industry.Flexible pressure sensors with carbon nanomaterials as active materials have always been the research hotspot.Because carbon nanomaterials have low price,rich sources and various shapes,and what's more,have excellent electrical conductivity and mechanical properties.The research progress of various carbon-based flexible piezoresistive pressure sensors was reviewed,including carbon black,carbon nanotubes,graphene and hybrid carbon materials.It was pointed out that the synergistic effect of hybrid carbon materials was beneficial to construct efficiently3D conductive networks,and made further breakthroughs in the preparation of active materials and the performance of flexible sensor devices.

参考文献

[1] 邱澜,曹建国,周建辉,等.机器人柔弹性仿生电子皮肤研究进展[J].中南大学学报(自然科学版),2019,(5):1065-1074.
[2] 黄振龙,张尚杰,潘泰松,等.基于碳纳米材料的柔性薄膜器件研究[J].中国科学:物理学力学天文学,2016,46(4):044606-044615.
[3] 曹建国,周建辉,缪存孝,等.电子皮肤触觉传感器研究进展与发展趋势[J].哈尔滨工业大学学报2017,49(1):1-13.
[4] Di C A,Zhang F,Zhu D.Multi-functional integration of organic field-effect transistors (OFETs):advances and perspectives[J].Advanced Materials,2013,25(3):313-330.
[5] Schwartz G,Tee B C K,Mei J,et al.Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring[J].Nature Communications,2013,4(1):1859.
[6] Wang H,Cheng C,Zhang L,et al.Inkjet printing short-channel polymer transistors with high-performance and ultrahigh photoresponsivity[J].Advanced Materials,2014,26(27):4683-4689.
[7] 卢忠花,王卿璞,鲁海瑞,等.柔性可穿戴电子的新进展[J].微纳电子技术,2014,(11):685-691.
[8] Yu G,Hu J,Tan J,et al.A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins[J].Nanotechnology,2018,29(11):115502.
[9] You I,Choi S E,Hwang H,et al.E-skin:E-skin tactile sensor matrix pixelated by position-registered conductive microparticles creating pressure-sensitive selectors[J].Advanced Functional Materials,2018,28(31):1870214.
[10] 张超然,刘婉姬,王立石,等.电子皮肤专利分析[J].中国发明与专利,2016,(3):26-32.
[11] 于江涛,雷孙,瑶肖,等.压阻式柔性压力传感器的研究进展[J].电子元件与材料,2019,38(6):1-11.
[12] Xu K,Lu Y,Takei K.Multifunctional skin-inspired flexible sensor systems for wearable electronics[J].Advanced Materials Technologies,2019,4(3):1800628.
[13] Liu W,Liu N,Yue Y,et al.Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film[J].Small,2018,14(15):1704149.
[14] Muro-de-la-Herran A,Garcia-Zapirain B,Mendez-Zorrilla A.Gait analysis methods:an overview of wearable and non-wearable systems,highlighting clinical applications[J].Sensors (Basel),2014,14(2):3362-3394.
[15] Gong S,Schwalb W,Wang Y,et al.A wearable and highly sensitive pressure sensor with ultrathin gold nanowires[J].Nat Commun,2014,5:3132.
[16] 文灿,唐红定,夏江滨.导电硅橡胶的研究进展[J].有机硅材料,2019,33(z1):74-78.
[17] Yi W,Wang Y,Wang G,et al.Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors[J].Polymer Testing,2012,31(5):677-684.
[18] 段建瑞,李斌,李帅臻,等.乙炔炭黑表面氧化改性及对硅橡胶压阻特性的影响[J].高分子材料科学与工程,2017,33(1):81-85.
[19] 仉月仙,李斌.导电橡胶复合材料压力传感特性研究[J].功能材料,2016,47(11):105-109.
[20] 顾志荣,秦会斌.柔性压力传感器设计与实现[J].传感器与微系统,2018,37(10):114-116.
[21] Wu X,Han Y,Zhang X,et al.Large-area compliant,low-cost,and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing[J].Advanced Functional Materials,2016,26(34):6246-6256.
[22] Tombler T W,Zhou C,Alexseyev L,et al.Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation[J].Nature,2000,405(6788):769-772.
[23] Liu Y,Wang H,Zhao W,et al.Flexible,stretchable sensors for wearable health monitoring:sensing mechanisms,materials,fabrication strategies and features[J].Sensors,2018,18(2).
[24] Stampfer C,Jungen A,Linderman R,et al.Nano-electromechanical displacement sensing based on single-walled carbon nanotubes[J].Nano Letters,2006,6(7):1449-1453.
[25] 阮晓光,柴润宁,张学锋,等.碳纳米管/PDMS复合材料柔性阵列压力传感器制备与实验[J].传感技术学报,2018,31(10):1505-1510.
[26] 汪海船,毛沛楠,吕宏伟,等.基于多孔PDMS/MWCNTs的柔性压力传感器[J].传感器与微系统,2020,39(4):70-72.
[27] Han J W,Kim B,Li J,et al.Flexible,compressible,hydrophobic,floatable,and conductive carbon nanotube-polymer sponge[J].Applied Physics Letters,2013,102(5):051903.
[28] Jung S,Kim J H,Kim J,et al.Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces[J].Advanced Materials,2014,26(28):4825-4830.
[29] 张浩,朱明.纤维素基柔性压力传感器及其性能表征[J].中国造纸学报,2020,35(1):26-32.
[30] Zhu SE,Ghatkesar M K,Zhang C,et al.Graphene based piezoresistive pressure sensor[J].Applied Physics Letters,2013,(102):161904.
[31] Yan C,Wang J,Kang W,et al.Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors[J].Advanced Materials,2014,26(13):2022-2027.
[32] 卢韵静,于星元,田明伟,等.石墨烯/聚二甲基硅氧烷三维非织造结构压阻柔性压力传感器[J].传感技术学报,2018,31(9):1337-1340.
[33] 王萍萍,袁雪,陈松,等.基于石墨烯/聚丙烯酸三维多孔材料的高灵敏高稳定性柔性压阻材料的制备及其应用[J].功能材料,2018,49(2):02214-02220.
[34] Luo N,Huang Y,Liu J,et al.Hollow-structured graphene-silicone-composite-based piezoresistive sensors:decoupled property tuning and bending reliability[J].Advanced Materials,2017,29(40):1702675.
[35] Yao H B,Ge J,Wang C F,et al.A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design[J].Advanced Materials,2013,25(46):6692-6698.
[36] Lin L,Liu S,Zhang Q,et al.Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer[J].ACS Appl Mater Interfaces,2013,5(12):5815-5824.
[37] Huang Y,Wang W,Sun Z,et al.A multilayered flexible piezoresistive sensor for wide-ranged pressure measurement based on CNTs/CB/SR composite[J].Journal of Materials Research,2015,30(12):1869-1875.
[38] Zhao S,Zhao H,Li G,et al.Synergistic effect of carbon fibers on the conductive properties of a segregated carbon black/polypropylene composite[J].Materials Letters,2014,129:72-75.
[39] Liu H,Gao J,Huang W,et al.Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers[J].Nanoscale,2016,8(26):12977-12989.
[40] Oh J Y,Jun G H,Jin S,et al.Enhanced electrical networks of stretchable conductors with small fraction of carbon nanotube/graphene hybrid fillers[J].ACS Appl Mater Interfaces,2016,8(5):3319-3325.
Options
文章导航

/