金属-有机框架材料(MOFs)材料具有大的比表面积,高的孔隙率,易于调变的孔道尺寸和表面化学环境,展现出巨大的应用前景。然而常用的晶化釜溶剂热法产率低、能耗高,难以实现工业化大批量生产。采用常压开放体系,在动态条件下实现了MOF-808的高效合成。详细考察了不同合成温度及合成时间的影响,通过X射线粉末衍射、扫描电子显微镜、N2-吸脱附及热重等手段对样品的结晶度、形貌、孔道结构及稳定性进行表征。结果表明:在130℃,5h的条件下即可合成得到尺度均一、结构规整的高结晶度MOF-808。得到的MOFs材料具有超过1000m2/g的比表面积和超过0.50cm3/g的孔体积,且具有高的热稳定性。该方法突破了晶化釜产量的限制,大大缩短了MOF材料的合成时间,提高了合成速率。
Metal-Organic Framework (MOFs) materials have large surface area,high porosity,easily adjustable pore size and surface chemical environment,showing great application prospects.However,the solvothermal method is difficult to achieve industrial mass production due to its low yield and high energy consumption.MOF-808 was synthesized efficiently under dynamic conditions in atmospheric open system.The effects of different synthesis temperatures and times were investigated in detail.The crystallinity,morphology,pore structure and stability of the prepared samples were characterized by X-ray powder diffraction (XRD),scanning electron microscopy (SEM),N2 adsorption-desorption and thermogravimetry (TG).The results showed that MOF-808 with uniform size and regular structure can be synthesized at 130℃ for 5h.The obtained MOFs had high specific surface areas (>1000m2/g) and high pore volumes (>0.50cm3/g),as well as excellent thermal stability.This method breaked through the limit of crystallization kettle on the yield,greatly shorted the synthesis time and increased the synthesis rate of MOFs.
[1] Yang D,Gates B C.Catalysis by metal organic frameworks:perspective and suggestions for future research[J].ACS Catalysis,2019,9(3):1779-1798.
[2] Kang L,Smith S,Wang C.Metal-organic framework preserves the biorecognition of antibodies on nanoscale surfaces validated by single-molecule force spectroscopy[J].ACS Applied Materials & Interfaces,2020,12(2):3011-3020.
[3] Falaise C,Volkringer C,Vigier J F,et al.Three-dimensional MOF-type architectures with tetravalent uranium hexanuclear Motifs(U6O8)[J].Chemistry-a European Journal,2013,19(17):5324-5331.
[4] De Vos D,Bueken B,Van de Voorde B.Tetravalent MOFs as catalysts:a broad field of possibilities[J].Abstracts of Papers of the American Chemical Society,2015,250.
[5] Abdel-Mageed A M,Rungtaweevoranit B,Parlinska-Wojtan M,et al.Highly active and stable single-atom Cu catalysts supported by a metal-organic framework[J].Journal of the American Chemical Society,2019,141(13):5201-5210.
[6] Li F,Wang D K,Xing Q J,et al.Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification:an efficient strategy to boost the visible-light-driven photocatalytic performance[J].Applied Catalysis B-Environmental,2019,243:621-628.
[7] Qin J S,Yuan S,Zhang L,et al.Creating well-defined hexabenzocoronene in zirconium metal-organic framework by postsynthetic annulation[J].Journal of the American Chemical Society,2019,141(5):2054-2060.
[8] Chen Z J,Hanna S L,Redfern L R,et al.Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs[J].Coordination Chemistry Reviews,2019,386:32-49.
[9] Mallick A,El-Zohry A M,Shekhah O,et al.Unprecedented ultralow detection limit of amines using a thiadiazole-functionalized Zr(Ⅳ)-based metal-organic framework[J].Journal of the American Chemical Society,2019,141(18):7245-7249.
[10] Zhang X M,Zhang Z H,Zhang B H,et al.Synergistic effect of Zr-MOF on phosphomolybdic acid promotes efficient oxidative desulfurization[J].Applied Catalysis B-Environmental,2019,256.
[11] Katz M J,Brown Z J,Colon Y J,et al.A facile synthesis of UiO-66,UiO-67 and their derivatives[J].Chemical Communications,2013,49(82):9449-9451.
[12] Xu H Q,Wang K,Ding M,et al.Seed-mediated synthesis of metal-organic frameworks[J].Journal of the American Chemical Society,2016,138(16):5316-5320.
[13] Sha F,Chen Y,Drout R J,et al.Stabilization of an enzyme cytochrome c in a metal-organic framework against denaturing organic solvents[J].iScience,2021,24(6):102641.
[14] Geravand E,Farzaneh F,Gil-San-Millan R,et al.Mixed-metal cerium/zirconium MOFs with improved nerve agent detoxification properties[J].Inorganic Chemistry,2020,59(22):16160-16167.
[15] Xin L,Zhang D,Qu K,et al.Zr-MOF-enabled controllable ion sieving and proton conductivity in flow battery membrane[J].Advanced Functional Materials,2021,31(42):2104629.
[16] Bai Y,Dou Y,Xie L H,et al.Zr-based metal-organic frameworks:design,synthesis,structure,and applications[J].Chemical Society Reviews,2016,45(8):2327-2367.
[17] Liu P,Redekop E,Gao X,et al.Oligomerization of light olefins catalyzed by Brønsted-Acidic metal-organic framework-808[J].Journal of the American Chemical Society,2019,141(29):11557-11564.
[18] Furukawa H,Gandara F,Zhang Y B,et al.Water adsorption in porous metal-organic frameworks and related materials[J].Journal of the American Chemical Society,2014,136(11):4369-4381.
[19] Jiang J,Gandara F,Zhang Y B,et al.Superacidity in sulfated metal-organic framework-808[J].Journal of the American Chemical Society,2014,136(37):12844-12847.