综述与专论

基于功能化沸石咪唑盐骨架的电容去离子电极材料研究进展

展开
  • 1.郑州大学化学学院,郑州 450001;
    2.郑州大学河南省资源与材料工业技术研究院,郑州 450001;
    3.郑州大学化工学院,郑州 450001
张龙玉(1996-),男,硕士研究生,主要从事电吸附电极材料的开发,E-mail:zly18232668752@163.com。

收稿日期: 2020-09-15

  修回日期: 2021-09-27

  网络出版日期: 2021-12-31

基金资助

河南省高等学校重点科研项目(21A610011),郑州大学高水平人才引进计划(22180012)

Research progress on capacitive deionization electrode material based on functionalized zeoliticimidazolate frameworks

Expand
  • 1. School of Chemistry,Zhengzhou University,Zhengzhou 450001;
    2. Henan Institute of Resources and Materials Industry Technology,Zhengzhou University,Zhengzhou 450001;
    3. School of Chemical Engineering,Zhengzhou University,Zhengzhou 450001

Received date: 2020-09-15

  Revised date: 2021-09-27

  Online published: 2021-12-31

摘要

电容去离子技术(CDI)是一种利用两电极之间的电压进行海水淡化的新技术。沸石咪唑盐骨架(ZIFs)作为一种含氮金属有机框架,其衍生的碳材料是一种新型CDI电极材料,但存在单孔结构、孔利用率低和电导率低的缺点,因此如何扩展孔结构、提高电导率成为了研究热点。针对提高ZIFs衍生碳材料电容去离子性能的方法进行了综述,重点介绍了孔结构调控、杂原子掺杂、纳米化复合和双金属/双配体构筑,并对ZIFs衍生碳作为CDI电极材料存在的不足及未来研究方向进行了总结。

本文引用格式

张龙玉, 柴文翠, 马梦瑶, 曹亦俊 . 基于功能化沸石咪唑盐骨架的电容去离子电极材料研究进展[J]. 化工新型材料, 2021 , 49(12) : 61 -66 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.12.013

Abstract

Capacitive deionization (CDI) is a promising new technology for water desalination making use of an electrical voltage applied between two electrodes.Zeoliticimidazolate frameworks (ZIFs) are a kind of N-containing metal organic frameworks.Their derived carbons are novel CDI electrode materials.However,the shortcomings of single-pore structure,low pore utilization and low conductivity are not conducive to its adsorption performance.How to expand the pore structure and improve conductivity has become a research hotspot.The methods of improving the capacitive deionization performance of ZIFs derived carbon materials were analyzed and summarized,including pore structure design,heteroatom doping,nano composition and bimetal or dual ligand construction.The main problems and future development of ZIFs derived carbons as CDI electrode materials were summarized.

参考文献

[1] Vörösmarty C J,Mcintyre P B,Gessner M O,et al.Global threats to human water security and river biodiversity[J].Nature,2010,467(7315):555-561.
[2] Saleem M W,Jande Y A C,Kim W.Performance optimization of integrated electrochemical capacitive deionization and reverse electrodialysis model through a series pass desorption process[J].Journal of Electroanalytical Chemistry,2017,795:41-50.
[3] Xing W,Liang J,Tang W,et al.Versatile applications of capacitive deionization (CDI)-based technologies[J].Desalination,2020,482:114390.
[4] 郭洪飞,陈兆林,宋存义,等.电吸附除盐技术的研究与应用进展[J].工业水处理,2011,31(04):11-14.
[5] Porada S,Zhao R,van der Wal A,et al.Review on the science and technology of water desalination by capacitive deionization[J].Progress in Materials Science,2013,58(8):1388-1442.
[6] Li Y,Chen N,Li Z,et al.Frontiers of carbon materials as capacitive deionization electrodes[J].Dalton Transactions,2020,49(16):5006-5014.
[7] Sufiani O,Elisadiki J,Machunda R L,et al.Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications[J].Journal of Electroanalytical Chemistry,2019,848:113328.
[8] Li J,Wang X,Wang H,et al.Functionalization of biomass carbonaceous aerogels and their application as electrode materials for electro-enhanced recovery of metal ions[J].Environmental Science:Nano,2017,4(5):1114-1123.
[9] Yang L,Shi Z,Yang W.Enhanced capacitive deionization of lead ions using air-plasma treated carbon nanotube electrode[J].Surface & Coatings Technology,2014,251:122-127.
[10] El-Deen A G,Boom R M,Kim H Y,et al.Flexible 3D nanoporous graphene for desalination and bio-decontamination of brackish watervia asymmetric capacitive deionization[J].ACS Applied Materials & Interfaces,2016,8(38):25313-25325.
[11] Singh K,Porada S,de Gier H D,et al.Timeline on the application of intercalation materials in Capacitive Deionization[J].Desalination,2019,455:115-134.
[12] Wang M,Xu X,Liu Y,et al.From metal-organic frameworks to porous carbons:a promising strategy to prepare high-performance electrode materials for capacitive deionization[J].Carbon,2016,108:433-439.
[13] Chang L,Li J,Duan X,et al.Porous carbon derived from Metal-organic framework (MOF) for capacitive deionization electrode[J].Electrochimica Acta,2015,176:956-964.
[14] Liu Y,Xu X,Wang M,et al.Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization[J].Chemical Communications,2015,51(60):12020-12023.
[15] Farha O K,Eryazici I,Jeong N C,et al.Metal-organic framework materials with ultrahigh surface areas:is the sky the limit?[J].Journal of the American Chemical Society,2012,134(36):15016-15021.
[16] Wang J,Wang Y,Hu H,et al.From metal-organic frameworks to porous carbon materials:recent progress and prospects from energy and environmental perspectives[J].Nanoscale,2020,12(7):4238-4268.
[17] Li D,Chen H,Liu G,et al.Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery[J].Carbon,2015,94:888-894.
[18] Duan X,Liu W,Chang L.Porous carbon prepared by using ZIF-8 as precursor for capacitive deionization[J].Journal of the Taiwan Institute of Chemical Engineers,2016,62:132-139.
[19] Xu X,Tan H,Wang Z,et al.Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination[J].Environmental Science-Nano,2019,6(3):981-989.
[20] Zhang Y,Chen L,Mao S,et al.Fabrication of porous graphene electrodes via CO2 activation for the enhancement of capacitive deionization[J].Journal of Colloid and Interface Science,2019,536:252-260.
[21] Liu Y,Nie C,Liu X,et al.Review on carbon-based composite materials for capacitive deionization[J].RSC Advances,2015,5(20):15205-15225.
[22] Shen J,Li Y,Wang C,et al.Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization[J].Electrochimica Acta,2018,273:34-42.
[23] Wang Z,Yan T,Shi L,et al.In situ expanding pores of dodecahedron-like carbon frameworks derived from MOFs for enhanced capacitive deionization[J].ACS Applied Materials & Interfaces,2017,9(17):15068-15078.
[24] Kim J,Kim J,Kim J H,et al.Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal-organic frameworks for improved CDI performance[J].Chemical Engineering Journal,2020,382:122996.
[25] Zhao Y,Zhang Y,Tian P,et al.Nitrogen-rich mesoporous carbons derived from zeoliticimidazolate framework-8 for efficient capacitive deionization[J].Electrochimica Acta,2019,321:134665.
[26] Zong M,Zhang Y,Li K,et al.Zeoliticimidazolate framework-8 derived two-dimensional N-doped amorphous mesoporous carbon nanosheets for efficient capacitive deionization[J].Electrochimica Acta,2020,329:135089.
[27] Gao T,Liu Z,Li H.Heteroatom doping modified hierarchical mesoporous carbon derived from ZIF-8 for capacitive deionization with enhanced salt removal rate[J].Separation and Purification Technology,2020,231:115918.
[28] Zhang H,Zhang W,Shen J,et al.Ag-doped hollow ZIFs-derived nanoporous carbon for efficient hybrid capacitive deionization[J].Desalination,2020,473:114173.
[29] Zhang J,Fang J,Han J,et al.N,P,S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization[J].Journal of Materials Chemistry A,2018,6(31):15245-15252.
[30] Xu X,Wang M,Liu Y,et al.Metal-organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization[J].Journal of Materials Chemistry A,2016,4(15):5467-5473.
[31] Xu X,Li C,Wang C,et al.Three-dimensional nanoarchitecture of carbon nanotube-interwoven metal-organic frameworks for capacitive deionization of saline water[J].ACS Sustainable Chemistry & Engineering,2019,7(16):13949-13954.
[32] Wang Z,Xu X,Kim J,et al.Nanoarchitectured metal-organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization[J].Materials Horizons,2019,6(7):1433-1437.
[33] Wang M,Xu X,Tang J,et al.High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches[J].Chemical Communications,2017,53(78):10784-10787.
[34] Xu X,Tang J,Kaneti Y V,et al.Unprecedented capacitive deionization performance of interconnected iron-nitrogen-doped carbon tubes in oxygenated saline water[J].Materials Horizons,2020,7(5):1404-1412.
[35] Wang C,Osada M,Ebina Y,et al.All-nanosheet ultrathin capacitors assembled layer-by-layer via solution-based processes[J].ACS Nano,2014,8(3):2658-2666.
[36] Li Y,Kim J,Wang J,et al.High performance capacitive deionization using modified ZIF-8-derived,N-doped porous carbon with improved conductivity[J].Nanoscale,2018,10(31):14852-14859.
[37] Kim J,You J,Kim B,et al.Solution processable and patternablepoly(3,4-alkylenedioxythiophene)s for large-area electrochromic films[J].Advanced Materials,2011,23(36):4168.
[38] Zhao Y,Luo G,Zhang L,et al.Nitrogen-doped porous carbon tubes composites derived from metal-organic framework for highly efficient capacitive deionization[J].Electrochimica Acta,2020,331:135420.
[39] Zhang W X,ArramelA,Wong P K J,et al.Core-shell hybrid zeoliticimidazolateframeworkderived hierarchical carbon for capacitive[J].Journal of Materials Chemistry A,2020,8(29):14653-14660.
[40] Wang Z,Yan T T,Fang J H,et al.Nitrogen-doped porous carbon derived from a bimetallic metal-organic framework as highly efficient electrodes for flow-through deionization capacitors[J].Journal of Materials Chemistry A,2016,(4):10858-10868.
[41] Ding M,Shi W,Guo L,et al.Bimetallic metal-organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination[J].Journal of Materials Chemistry A,2017,5(13):6113-6121.
[42] Zhang J,Yan T,Fang J,et al.Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal-organic frameworks[J].Environmental Science:Nano,2020,7(3):926-937.
Options
文章导航

/