[1] 霍浪.细菌的功过[J].林业与生态,2013,8:35.
[2] Wei Q,Zhao M,Li X Y.Extraction of chelerythrine and its effects on pathogenic fungus spore germination[J].Pharmacognosy Magazine,2017,13(52):600-606.
[3] 钟金梅.二氧化钛光催化抑菌性及其抑菌机理的研究[D].石家庄:河北师范大学,2010.
[4] 熊建裕.纳米二氧化钛光催化抗菌材料研究[D].武汉:华中科技大学,2005.
[5] 王慧,曾令可,程小苏,等.光催化二氧化钛的制备及其抗菌性能[C].第二届中国抗菌材料产业发展大会论文集,2002:95-99.
[6] Guan R Q,Zhai H J,Li J X,et al.Reduced mesoporous TiO2 with Cu2S heterojunction and enhanced hydrogen production without noble metal cocatalyst[J].Applied Surface Science,2020,507:144772.
[7] Li M X,Guan R Q,Li J X,et al.Performance and mechanism research of Au-HSTiO2 on photocatalytic hydrogen production[J].Chemical Journal of Structural Chemistry,2020,39(8):1437-1443.
[8] 李灵灵,熊志强,张伟,等.纳米TiO2材料光催化抗菌性能研究与应用[J].现代化工,2019,39(10):37-41.
[9] Nagay B E,Dini C,CordeiroJ M,et al.Visible-light-induced photocatalytic and antibacterial activity of TiO2 codoped with nitrogen and bismuth:new perspectives to control implant-biofilm-related diseases[J].ACS Applied Materials & Interfaces,2019,11(20):18186-18202.
[10] Sunada K,Kikuchi Y,Hashimoto K,et al.Bactericidal and detoxification effects of TiO2 thin film photocatalysts[J].Environmental Science Technology,1998,32(5):726-728.
[11] Guo M Y,Liu F Z,Leung Y H,et al.Annealing-induced antibacterial activity in TiO2 under ambient light[J].The Journal of Physical Chemistry C,2017,21(43):24060-24068.
[12] Liu N,Chang Y,Feng Y L,et al.{101}-{001} Surface heterojunction-enhanced antibacterial activity of titanium dioxide nanocrystals under sunlight irradiation[J].ACS Applied Materials & Interfaces,2017,9(7):5907-5915.
[13] Wen J,Li Q Y,Li H,et al.Nano TiO2 Imparts amidoximated wool fibers with good antibacterial activity and adsorption capacity for uranium(Ⅵ) recovery[J].Industrial & Engineering Chemistry Research,2018,57(6):1826-1833.
[14] Arisoy F D,Kolewe K W,Homyak B,et al.Bioinspired photocatalytic shark-skin surfaces with antibacterial and antifouling activity via nanoimprint lithography[J].ACS Applied Materials & Interfaces,2018,10(23):20055-20063.
[15] Fu G,Vary P S,Lin C T.Anatase TiO2 nanocomposites for antimicrobial coatings[J].The Journal of Physical Chemistry B,2005,109(18):8889-8898.
[16] Raut N C,Mathews T,AjikumarP K,et al.Sunlight active antibacterial nanostructured N-doped TiO2 thin films synthesized by an ultrasonic spray pyrolysis technique[J].RSC Advances,2012,2(28):10639-10647.
[17] Liu J M,Lou Y X,Zhang C,et al.Improved corrosion resistance and antibacterial properties of composite arch-wires by N-doped TiO2 coating[J].RSC Advances,2017,7(69):43938-43949.
[18] Cheng H Y,Zhang M,Hu H,et al.Selenium-modified TiO2 nanoarrays with antibacterial and anticancer properties for postoperation therapy applications[J].ACS Applied Bio Materials,2018,1(5):1656-1666.
[19] Tobaldi D M,Piccirillo C,Pullar R C,et al.Silver-modified nano-titania as an antibacterial agent and photocatalyst[J].The Journal of Physical Chemistry C,2014,118(9):4751-4766.
[20] Albert E,Albouy P A,Ayral A,et al.Antibacterial properties of Ag-TiO2 composite sol-gel coatings[J].RSC Advances,2015,5(73):59070-59081.
[21] Vijayalakshmi K,Sivaraj D.Synergistic antibacterial activity of barium doped TiO2 nanoclusters synthesized by microwave processing[J].RSC Advances,2016,6(12):9663-9671.
[22] Guin D,Manorama S V,Latha J N L,et al.Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes:synthesis,characterization,and tested for antibacterial outcome[J].The Journal of Physical Chemistry C,2007,111(36):13393-13397.
[23] Zhang H J,Chen G H.Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method[J].Environmental Science & Technology,2009,43(8):2905-2910.
[24] Perkas N,Lipovsky A,Amirian G,et al.Biocidal properties of TiO2 powder modified with Ag nanoparticles[J].The Journal of Materials Chemistry B,2013,1(39):5309-5316.
[25] Li M H,Noriega-Trevino M E,Nino-Martinez N,et al.Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions[J].Environmental Science & Technology,2011,45(20):8989-8995.
[26] Baghriche O,Rtimi S,Pulgarin C,et al.Innovative TiO2/Cu nanosurfaces inactivating bacteria in the minute range under low-intensity actinic light[J].ACS Applied Materials & Interfaces,2012,4(10):5234-5240.
[27] Azimzadehirani M,Elahifard M R,Haghighi S,et al.Highly efficient hydroxyapatite/TiO2 composites covered by silver halides as e.coli disinfectant under visible light and dark media[J].Photochemical & Photobiological Sciences,2013,12(10):1787-1794.
[28] Zhang Q S,Ye J W,Tian P,et al.Ag/TiO2 and Ag/SiO2 composite spheres:synthesis,characterization and antibacterial properties[J].RSC Advances,2013,3(25):9739-9744.
[29] Zawadzka K,Kadziola K,Felczak A,et al.Surface area or diameter-which factor really determines theantibacterial activity of silver nanoparticles grown on TiO2coatings[J].New Journal of Chemistry,2014,38(7):3275-3281.
[30] Cao C J,Huang J C,Li L,et al.Highly dispersed Ag/TiO2via adsorptive self-assembly for bactericidal application[J].RSC Advances,2017,7(22):13347-13352.
[31] Faraji M,Mohaghegh N,Abedini A.TiO2 nanotubes/ti plates modified by silver-benzene with enhanced photocatalytic antibacterial properties[J].New Journal of Chemistry,2018,42(3):2058-2066.
[32] Ghafoor S,Hussain S Z,Waseem S,et al.Photo-reduction of heavy metal ions and photo-disinfection of pathogenic bacteria under simulated solar light using photosensitized TiO2 nanofibers[J].RSC Advances,2018,8(36):20354-20362.
[33] Li H F,Zhong J H,Zhu H J,et al.Hybrid Cu2O/TiO2 nanocomposites with enhanced photocatalytic antibacterialactivity toward acinetobacter baumannii[J].ACS Applied Bio Materials,2019,2(11):4892-4903.