[1] Elad Y,Yunis H,Katan T.Multiple fungicide resistance to benzimidazoles,dicarboximides and diethofencarb in field isolates of botrytis cinerea in israel[J].Plant Pathology,1992,41(1):41-46.
[2] Matsunaga T,Tomoda R,Nakajima T,et al.Photoelectrochemical sterilization of microbial cells bysemiconductor powders[J].FEMS Microbiology Letters,1985,29(1-2):211-214.
[3] Zheng Q,Durkin D P,Elenewski J E,et al.Visible-light-responsive graphitic carbon nitride:rational design and photocatalytic applications for water treatment[J].Environmental Science & Technology,2016,50(23):12938-12948.
[4] Zhang C,Li Y,Shuai D,et al.Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control:a review[J].Chemosphere,2019,214:462-479.
[5] Zhao H,Yu H,Quan X,et al.Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation[J].Applied Catalysis B:Environmental,2014,152:46-50.
[6] Maeda K,Wang X,Nishihara Y.Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light[J].The Journal of Physical Chemistry C,2009,113(12):4940-4947.
[7] Dong F,Zhao Z,Xiong T,et al.In situ construction of g-C3N4/g-C3N4 metal-freeheterojunction for enhanced visible-light photocatalysis[J].Applied Materials & Interfaces,2013,5(21):11392-11401.
[8] Groenewolt M,Antonietti M.Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices[J].Advanced Materials,2005,17(14):1789-1792.
[9] Kroke E,Schwarz M,Kroll P,et al.From trichloro-tri-striazine to g-C3N4 structures[J].New Journal of Chemistry,2002,26(5):508-512.
[10] Xu Y,Gao S P.Band gap of g-C3N4 in the GW approximation[J].International Journal of Hydrogen Energy,2012,37(15):11072-11080.
[11] Zhang J,Guo F,Wang X.An optimized and general synthetic strategy for fabrication of polymeric carbon nitride nanoarchitectures[J].Advanced Functional Materials,2013,23:3008-3014.
[12] Bai J,Yin C,Xu H,et al.Facile urea-assisted precursor pre-treatment to fabricate porous g-C3N4 nanosheets for remarkably enhanced visible-light-driven hydrogen evolution[J].Journal of Colloid and Interface Science,2018,532:280-286.
[13] Ong W J,Tan L L,Ng Y H,et al.Graphitic carbon nitride(g-C3N4)-based photocatalysts for artificial photosynthesis andenvironmental remediation:are we a step closer to achievingsustainability?[J].Chemical Reviews,2016,116:7159-7329.
[14] Zhang J,Chen Y,Wang X.Two-dimensional covalent carbon nitridenanosheets:synthesis,functionalization,and applications[J].Energy Environment Science,2015,8:3092-3108.
[15] Fu J W,Yu J G,Jiang C J,et al.g-C3N4-based heterostructured photocatalysts[J].Advanced Energy Materials,2018,8:1701503.
[16] Xu J,Wang Z,Zhu Y.Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C3N4 nanosheets[J].ACS Applied Materials & Interfaces,2017,9(33):27727-27735.
[17] Li H J,Qian D J,Chen M.A templateless infrared heatingprocess for fabricating carbon nitride nanorods with efficientphotocatalytic H2 evolution[J].ACS Applied Materials &Interfaces,2015,7(45):25162-25170.
[18] Cui Y,Ding Z,Fu X,et al.Construction of conjugated carbonnitride nanoarchitectures in solution at low temperatures forphotoredoxcatalysis[J].Angewandte Chemie International Edition,2012,124(47):11814-11818.
[19] Xu J,Wang Z,Zhu Y.Highly efficient visible photocatalytic disinfection and degradation performances of microtubularnanoporous g-C3N4 via hierarchical construction and defects engineering[J].Journal of Materials Science & Technology,2020.
[20] Zhang J,Yan M,Yuan X Z,et al.Nitrogen doped carbon quantum dots mediated silver phosphate/bismuth vanadate Z-scheme photocatalyst for enhanced antibiotic degradation[J].Journal of Colloid and Interfaceence,2018,529:11-22.
[21] Li J,Liu K,Xue J,et al.CQDS preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication[J].Journal of Catalysis,2019,369:450-461.
[22] Wang W,Zeng Z,Zeng G,et al.Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light[J].Chemical Engineering Journal,2019,378:122132.
[23] Wang Y,Zhao X,Cao D,et al.Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol a by single-atom dispersed Ag mesoporous g-C3N4 hybrid[J].Applied Catalysis B:Environmental,2017,211:79-88.
[24] Jo S,Verma P,Kuwahara Y,et al.Enhanced hydrogen production from ammonia borane using controlled plasmonic performance of Au nanoparticles deposited on TiO2[J].Journal of Materials Chemistry A,2017,5(41):21883-21892.
[25] Zhang S,Li J,Wang X,et al.In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonicphotocatalyst for highly efficient visible-light photocatalysis[J].ACS Applied Materials & Interfaces,2014,6(24):22116-22125.
[26] Lian Z,Wang W,Xiao S,et al.Plasmonic silver quantum dots coupled with hierarchical TiO2 nanotube arraysphotoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution[J].Scientific Reports,2015,5:10461.
[27] Dai J,Song J,Qiu Y,et al.Gold nanoparticle-decorated g-C3N4 nanosheets for controlled generation ofreactive oxygen species upon 670nm laser illumination[J].ACS Applied Materials & Interfaces,2019,11(11):10589-10596.
[28] Ma S,Zhan S,Jia Y,et al.Enhanced disinfection application of Ag-modified g-C3N4 composite under visible light[J].Applied Catalysis B:Environmental,2016,186:77-87.
[29] Zhu Y P,Ren T Z,Yuan Z Y.Mesoporous phosphorus-doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance[J].ACS Applied Materials & Interfaces,2015,7(30):16850-16856.
[30] Liu G,Niu P,Sun C,et al.Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4[J].Journal of the American Chemical Society,2010,132(33):11642-11648.
[31] Fang J,Fan H,Li M,et al.Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution[J].Journal of Materials Chemistry A,2015,3(26):13819-13826.
[32] Yan S C,Li Z S,Zou Z G.Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation[J].Langmuir,2010,26(6):3894-3901.
[33] Wang Y,Di Y,Antonietti M,et al.Excellent visible-light photocatalysisof fluorinated polymeric carbonnitride solids[J].Chemistry of Materials,2010,22(18):5119-5121.
[34] Atilla E,Toprak S K,Demirer T.Current review of iron overload and related complications in hematopoietic tem cell transplantation[J].Turkish Journal of Hematology,2017,34(1):1.
[35] Li Y,Liu X,Tan L,et al.Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation[J].Advanced Functional Materials,2018,28(30):1800299.
[36] Tang C,Liu C,Han Y,et al.Nontoxic carbon quantum dots/g-C3N4 for efficient photocatalytic inactivation of staphylococcus aureus under visible Light[J].Advanced Healthcare Materials,2019,8(10):1801534.
[37] Li Y,Liu X,Tan L,et al.Eradicating multidrug-resistant bacteria rapidly using a multi functionalg-C3N4@Bi2S3 nanorodheterojunction with or without antibiotics[J].Advanced Functional Materials,2019,29(20):1900946.
[38] Ayodhya D,Veerabhadram G.Ultrasonic synthesis of g-C3N4/CdS composites and their photodegradation,catalytic reduction,antioxidant and antimicrobial studies[J].Materials Research Innovations,2019:1-19.
[39] Ding H,Han D,Han Y,et al.Visible light responsive CuS/protonated g-C3N4 heterostructure for rapid sterilization[J].Journal of Hazardous Materials,2020:122423.
[40] Sundaram I M,Kalimuthu S,Ponniah G P.Highly active ZnO modified g-C3N4 nanocomposite for dye degradation under UV and visible light with enhanced stability and antimicrobial activity[J].Composites Communications,2017,5:64-71.
[41] Wu B,Li Y,Su K,et al.The enhanced photocatalytic properties of MnO2/g-C3N4 heterostructure for rapid sterilization under visible light[J].Journal of Hazardous Materials,2019,377:227-236.