开发与应用

基于仿生技术的摩擦材料的设计与性能研究

展开
  • 1.浙江农林大学化学与材料工程学院,杭州311300;
    2.国家木质资源综合利用工程技术研究中心,杭州311300
施冰冰(1997-),女,硕士研究生,主要研究方向为绿色复合材料和高性能复合材料。

收稿日期: 2020-06-12

  修回日期: 2021-08-19

  网络出版日期: 2021-11-02

基金资助

国家自然科学基金(51605446);浙江省自然科学基金探索项目(LY21C16003);浙江农林大学堂教学改革重点项目(KGZD18005);博士后基金项目(2018M630671)

Research progress on design of friction material based on bionic technology and its performance

Expand
  • 1. Department of Materials,College of Chemistry and Materials Engineering,Zhejiang A&F University,Hangzhou 311300;
    2. National Engineering and Technology Research Center of Wood-based Resources Comprehensive Utilization,Hangzhou 311300

Received date: 2020-06-12

  Revised date: 2021-08-19

  Online published: 2021-11-02

摘要

简要介绍了几种自然界动植物的仿生手段,分别从改变材料物理结构、化学组成,以及通过不同尺寸的材料之间优化组合的角度,概述了近年来一些摩擦材料的研究进展。这些性能优异的材料有望用于各种先进领域,包括生物医药和石油化工等。

关键词: 仿生; 材料; 摩擦; 润滑

本文引用格式

施冰冰, 刘丽娜, 郎俊彬, 傅深渊 . 基于仿生技术的摩擦材料的设计与性能研究[J]. 化工新型材料, 2021 , 49(10) : 219 -222 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.10.046

Abstract

Several biomimetic methods of natural animals and plants were briefly introduced.The development of friction materials in recent years by changing the physical structure and chemical composition of materials or by optimizing the combination of materials of different sizes through the bionic means of nature were summarized.These excellent materials were expected to be used in various advanced fields,including biomedicine and petrochemicals.

参考文献

[1] Holmberg K,Andersson P,Erdemir A.Global energy consumption due to friction in passenger cars[J].Tribology International,2012,47:221-234.
[2] Helms M,Vattam S S,Goel A K.Biologically inspired design:process and products[J].Design studies,2009,30(5):606-622.
[3] Zhao Y,Yu C,Lan H,et al.Improved interfacial floatability of superhydrophobic/superhydrophilic janus sheet inspired by lotus leaf[J].Advanced Functional Materials,2017,27(27):1701466.
[4] Ma Q,Wang W,Dong G.Facile fabrication of biomimetic liquid-infused slippery surface on carbon steel and its self-cleaning,anti-corrosion,anti-frosting and tribological properties[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,577:17-26.
[5] Jahn S,Seror J,Klein J.Lubrication of articular cartilage[J].Physics Today,2018,71(4):48-54.
[6] 李进,赵梓年,李征征,等.自愈合水凝胶的合成机理及生物医学应用[J].材料导报,2019,33(19):3328-3335.
[7] 周建康.SA/Col/SDF-1水凝胶负载BMSCs对脑损伤大鼠的神经修复作用[D].郑州大学,2019.
[8] 钟玉洁.基于羧甲基纤维素的酶交联仿贻贝水凝胶的制备与性能研究[D].华东理工大学,2019.
[9] Sánchez-Téllez D A,Téllez-Jurado L,Rodríguez-Lorenzo L M.Hydrogels for cartilage regeneration,from polysaccharides to hybrids[J].Polymers,2017,9(12):671.
[10] Suzuki A,Sasaki S,Murakami T.Development of PVA hydrogels with superior lubricity for artificial cartilage[M].Rheology of Biological Soft Matter.Springer,Tokyo,2017:339-374.
[11] Sakai N,Yarimitsu S,Sawae Y,et al.Biomimetic artificial cartilage:fibre-reinforcement of PVA hydrogel to promote biphasic lubrication mechanism[J].Biosurface and Biotribology,2019,5(1):13-19.
[12] 郭畅,张晓慧,蔡金明,等.石墨烯在纳米摩擦学中的研究进展[J].现代化工,2019,39(11):15-19,24.
[13] 刘静静,楚晖娟,魏宏亮,等.石墨烯基水凝胶的研究进展[J].化学进展,2015,27(11):1591-1603.
[14] Wang Z,Li J,Jiang L,et al.Zwitterionic hydrogel incorporated graphene oxide nanosheets with improved strength and lubricity[J].Langmuir,2019,35(35):11452-11462.
[15] Zhou H,Xiong D,Tong W,et al.Lubrication behaviors of PVA-casted LSPEEK hydrogels in artificial cartilage repair[J].Journal of Applied Polymer Science,2019:47944.
[16] Vogel D,Dempwolf H,Baumann A,et al.Characterization of thick titanium plasma spray coatings on PEEK materials used for medical implants and the influence on the mechanical properties[J].Journal of the Mechanical Behavior of Biomedical Materials,2018,77:600-608.
[17] Oaki Y,Imai H.The hierarchical architecture of nacre and its mimetic material[J].Angewandte Chemie International Edition,2005,44(40):6571-6575.
[18] Barthelat F,Tang H,Zavattieri P D,et al.On the mechanics of mother-of-pearl:a key feature in the material hierarchical structure[J].Journal of the Mechanics and Physics of Solids,2007,55(2):306-337.
[19] Sun J,Bhushan B.Hierarchical structure and mechanical properties of nacre:a review[J].RSC Advances,2012,2(20):7617-7632.
[20] Zhang H,Liu S,Xiao H,et al.Synthesis and tribological properties of bio-inspired nacre-like composites[J].Materials,2018,11(9):1563.
[21] 孙久荣,戴振东.非光滑表面仿生学(Ⅰ)[J].自然科学进展,2008,18(3):241-246.
[22] Liang Y,Gao D,Chen B,et al.Friction and wear study on friction pairs with a biomimetic non-smooth surface of 316L relative to CF/PEEK under a seawater lubricated condition[J].Chinese Journal of Mechanical Engineering,2019,32(1):1-14.
[23] Han X,Zhang D,Li X,et al.Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin[J].Chinese Science Bulletin,2008,53(10):1587.
[24] Li X,Deng J,Yue H,et al.Wear performance of electrohydrodynamically atomized WS2 coatings deposited on biomimetic shark-skin textured surfaces[J].Tribology International,2019,134:240-251.
[25] Ivanović L,Vencl A,Stojanović B,et al.Biomimetics design for tribological applications[J].Tribology in Industry,2018,40(3):448-456.
Options
文章导航

/