采用静电纺丝法以低分子量聚乙烯吡咯烷酮(PVP,K30)为聚合物增稠剂制备出Co3O4前驱体纤维,采用扫描电子显微镜对影响前驱体形貌的因素做了探究,并将煅烧产物Co3O4制备成扣式电池检测其电化学性能。结果表明:当采用无水乙醇+去离子水为溶剂,PVP为聚合物增稠剂,湿度为50%时,可达到良好的纺丝效果,并能制备出光滑、均匀、直径仅为315nm的纤维。将煅烧后的纤维用作锂离子电池负极时,首次放电比容量为843mAh/g,100次循环后其放电比容量为252mAh/g,并且在不同的电流密度下具有良好的倍率性能。
Co3O4 precursor fiber was prepared by electrospinning method with low molecular weight PVP (K30) as polymer thickener.The scanning electron microscope was used to investigate the factors affecting the precursor morphology,used the scanning electron microscope to explore the factors affecting the precursor morphology.The thermogravimetric analyzer and X-ray diffractometer were used to study the calcination mechanism of the precursor,and the calcined Co3O4 was prepared into a button cell to test its electricity chemical properties.The results shown that when using absolute ethanol+deionized water as the solvent,PVP as the polymer thickener,and the humidity was 50%,a good spinning effect can be achieved,and a smooth,uniform fiber with a diameter of only 315nm was produced.When the calcined fiber was used as a negative electrode of a lithium-ion battery,its first discharge specific capacity was 843mAh/g.After 100 cycles,its specific discharge capacity was 252mAh/g.It shown good rate performance under different current densities.
[1] Sulaiman M A,Hasan H.Development of lithium-ion battery as energy storage for mobile power sources applications[J].Aip Conference American Institute of Physics,2009,1169(1),DOI:doi.org/10.1063/1.3243268.
[2] Pegueroles-Queralt J,Bianchi F D,Gomis-Bellmunt O.Control of a lithium-ion battery storage system for microgrid applications[J].Journal of Power Sources,2014,272(25):531-540.
[3] Diouf B,Pode R.Potential of lithium-ion batteries in renewable energy[J].Renewable Energy,2015,76:375-380.
[4] Wang Yingying,Guo Shaoyi,Yuan Yongfeng,et al.Preparation of CNT surrounded nionanosheet material and study on properties of lithium ion batteries[J].Journal of Zhejiang Sci-Tech University (Natural Sciences Edition),2018,39(2):176-181.
[5] Pei X Y N,Mo D C,Lyu S S,et al.Facile preparation of N-doped MnO/rGO composite as an anode material for high-performance lithium-ion batteries[J].Applied Surface Science,2019,465(28):470-477.
[6] 李伟伟,潘全香,姚路,等.锂离子电池负极材料研究进展[J].电源技术,2013,37(7):1247-1249.
[7] 徐凯琪,苏伟,钟国彬,等.高容量锂离子电池硅基负极材料的研究进展[J].广东电力,2017,30(8):1-7.
[8] An W,Fu J,Mei S,et al.Dual carbon layers hybridized mesoporous tin hollow spheres for fast-rechargeable and high-stable lithium-ion battery anode[J].Journal of Materials Chemistry A,2017,5:14422-14429.
[9] Feng L L,Su C W,Xuan Z W,et al.Recent progress in metal oxide based materials as anode materials for lithium-ion batteries[J].Nano Biomedicine & Engineering,2013,5(1):57-64.
[10] 李巍.锂离子电池多孔碳负极材料的制备及性能研究[D].南昌:南昌大学,2018.
[11] 雒琴,赵馨茹,刘桂霞,等.锂离子电池锡基负极材料的研究进展[J].化学通报,2014,77(6):497-501.
[12] 卢璐,李军,蓝利芳,等.过渡金属氧化物负极材料的研究进展[J].化工新型材料,2018,46(9):65-68.
[13] Hwang S W,Umar A,Kim S H.Iron oxide (α-Fe2O3) nanoparticles as an anode material for lithium ion battery[J].Journal of Nanoscience & Nanotechnology,2015,15(7):5129-5134.
[14] Chen C,Pedro P,Fernandez M,et al.High performance NiO and NiO/graphene composite thin film electrode via electrostatic spray deposition for lithium ion batteries[J].Journal of Energy Storage,2016,8:198-204.
[15] Zeng K,Li X,Wang Z,et al.Cave-embedded porous Mn2O3 hollow microsphere as anode material for lithium ion batteries[J].Electrochimica Acta,2017,247:795-802.
[16] Guo X,Zeng Y,Song X,et al.Performance of TiO2 fibers prepared by electrostatic spinning as lithium-ion battery anode material[J].Russian Journal of Physical Chemistry,2019,93(3):584-587.
[17] Li Haipeng,Wei Yaqiong,Zhao Yan,et al.Simple one-pot synthesis of hexagonal ZnO nanoplates as anode material for lithium-ion batteries[J].Journal of Nanomaterials,2016,2016:1-6.
[18] Rui X,Tan H,Sim D,et al.Template-free synthesis of urchin-like Co3O4 hollow spheres with good lithium storage properties[J].Journal of Power Sources,2013,222:97-102.
[19] 邓庚凤,李志午,袁远亮,等.静电纺丝法制备氧化钴纳米纤维[J].粉末冶金技术,2019,37(5):42-47.