[1] 孟瑞璇,卢秋霞,解士杰.2017年有机功能材料研发热点回眸[J].科技导报,2018,36(1):46-52.
[2] Wang S H,Xu J,Wang W C,et al.Skin electronics from scalable fabrication of an intrinsically stretchable transistor array[J].Nature,2018,555(7694):83-88.
[3] Meng L X,Zhang Y M,Wan X J,et al.Organic and solution-processed tandem solar cells with 17.3% efficiency[J].Science,2018,361(6407):1094-1098.
[4] Turren-Cruz S,Hagfeldt A,Saliba M.Methylammonium-free,high-performance,and stable perovskite solar cells on a planar architecture[J].Science,2018,362(6413):449-458.
[5] Li K,Wu Y S,Tang Y B,et al.Ternary blended fullerene-free polymer solar cells with 16.5% efficiency enabled with a higher-LUMO-level acceptor to improve film morphology[J].Advanced Energy Mterials,2019,9(33):1901728.
[6] Liu T,Gao W,Wang Y L,et al.Unconjugated side-chain engineering enables small molecular acceptors for highly efficient non-fullerene organic solar cells:insights into the fine-tuning of acceptor properties and micromorphology[J].Advanced Functional Materials,2019,29(26):1902155.
[7] Zhang S Q,Qin Y P,Zhu J,et al.Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor[J].Advanced Materials,2018,30(20):1800868.
[8] Zhang H,Yao H F,Hou J X,et al.Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors[J].Advanced Materials,2018,30(28):1800613.
[9] Xu X P,Feng K,Bi Z Z,et al.Single-junction polymer solar cells with 16.35% efficiency enabled by a platinum(ⅱ) complexation strategy[J].Advanced Materials,2019,31(29):1901872.
[10] Cui Y,Yao H F,Hong L,et al.Achieving over 15% efficiency in organic photovoltaic cells via copolymer design[J].Advanced Materials,2019,31(14):1808356.
[11] Yu R N,Yao H F,Cui Y,et al.Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells[J].Advanced Materials,2019,31(36):1902302.
[12] Fu H T,Wang Z H,Sun Y M.Polymer donors for high-performance non-fullerene organic solar cells[J].Angewandte Chemie International Edition,2019,58(14):4442-4453.
[13] Yao H F,Cui Y,Qian D P,et al.14.7% Efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference[J].Journal of the American Chemical Society,2019,141(19):7743-7750.
[14] Li S X,Zhan L L,Sun C K,et al.Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offset[J].Journal of the American Chemical Society,2019,141(7):3073-3082.
[15] Li S S,Ye L,Zhao W C,et al.A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells[J].Journal of the American Chemical Society,2018,140(23):7159-7167.
[16] Yao Z Y,Liao X F,Gao K,et al.Dithienopicenocarbazole-based acceptors for efficient organic solar cells with optoelectronic response over 1000nm and an extremely low energy loss[J].Journal of the American Chemical Society,2018,140(6):2054-2057.
[17] Wang J Y,Zhang J X,Xiao Y Q,et al.Effect of isomerization on high-performance nonfullerene electron acceptor[J].Journal of the American Chemical Society,2018,140(29):9140-9147.
[18] Sun H L,Liu T,Yu J W,et al.A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency[J].Energy & Environmental Science,2019,12(11):3328-3337.
[19] Liu T,Luo Z H,Chen Y Z,et al.A nonfullerene acceptor with a 1000nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%[J].Energy & Environmental Science,2019,12(8):DOI:10.1039/c9ee01030k.
[20] Liu T,Luo Z H,Fan Q P,et al.Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors[J].Energy & Environmental Science,2018(11):3275-3282.
[21] Cui Y,Yao H F,Zhang J Q,et al.Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages[J].Nature Communications,2019,10:2515.
[22] Yuan J,Huang T Y,Cheng P,et al.Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics[J].Nature Communications,2019,10:570.
[23] Zhang J Q,Tan H S,Guo X G,et al.Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors[J].Nature Energy,2018,3(9):720-731.
[24] Zhou Z C,Xu S J,Song J N,et al.High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors[J].Nature Energy,2018,3(11):952-959.
[25] Hou J H,Inganas O,Friend R H,et al.Organic solar cells based on non-fullerene acceptors[J].Nature Materials,2018,17(2):119-128.
[26] Qian D P,Zheng Z L,Yao H F,et al.Design rules for minimizing voltage losses in high-efficiency organic solar cells[J].Nature Materials,2018,17(8):703-709.
[27] Zhao B D,Bai S,Kim V,et al.High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes[J].Nature Photonics,2018,12(12):783-789.
[28] Cheng P,Li G,Zhan X W,et al.Next-generation organic photovoltaics based on non-fullerene acceptors[J].Nature Photonics,2018,12(3):131-142.
[29] Yan H,Chen Z H,Zheng Y,et al.A high-mobility electron-transporting polymer for printed transistors[J].Nature,2009,457(7230):679-687.
[30] Lee M M,Teuscher J,Miyasaka T,et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].Science,2012,338(6107):643-647.
[31] Treat N D,Brady M A,Smith G,et al.Interdiffusion of PCBM and P3HT reveals miscibility in a photovoltaically active blend[J].Advanced Energy Materials,2011,1(1):82-89.
[32] Kim Y H S C,Machala M L,May C,et al.Highly conductive PEDOT∶PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells[J].Advanced Functional Materials,2011,21(6):1076-1081.
[33] Liang Y Y,Xu Z,Xia J B,et al.For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J].Advanced Materials,2010,22(20):E135-E138.
[34] Yin Z G,Wei J J,Zheng Q D.Interfacial materials for organic solar cells:recent advances and perspectives[J].Advanced Science,2016,3(8):1500362.
[35] Mishra A,Baeuerle P.Small molecule organic semiconductors on the move:promises for future solar energy technology[J].Angew Chem Int Ed,2012,51(9):2020-2067.
[36] Facchetti A.PI-conjugated polymers for organic electronics and photovoltaic cell applications[J].Chemistry of Materials,2011,23(3):733-758.
[37] Price S C,Stuart A C,Yang L Q,et al.Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells[J].Journal of the American Chemical Society,2011,133(12):4625-4631.
[38] Kippelen B,Bredas J L.Organic photovoltaics[J].Energy & Environmental Science,2009,2(3):251-261.
[39] Zhou H X,Yang L Q,You W.Rational design of high performance conjugated polymers for organic solar cells[J].Macromolecules,2012,45(2):607-632.
[40] Liu Y H,Zhao J B,Li Z K,et al.Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J].Nature Communications,2014,5:5293.
[41] Zhao J B,Li Y K,Yang G F,et al.Efficient organic solar cells processed from hydrocarbon solvents[J].Nature Energ,2016,1:15027.
[42] Sun Y M,Welch G C,Leong W L,et al.Solution-processed small-molecule solar cells with 6.7% efficiency[J].Nature Materials,2012,11(1):44-48.
[43] Park S H,Roy A,Beaupre S,et al.Bulk heterojunction solar cells with internal quantum efficiency approaching 100%[J].Nature Photonics,2009,3(5):297-303.
[44] Wu H,Kong D S,Ruan Z C,et al.A transparent electrode based on a metal nanotrough network[J].Nature Nanotechnology,2013,8(6):421-425.
[45] Yokota T,Zalar P,Kaltenbrunner M,et al.Ultraflexible organic photonic skin[J].Science Advances,2016,2(4):e1501856.