综述与专论

有机光电功能材料的研究进展——以Nature/Science等高质量期刊发表的高被引论文为例

展开
  • 1.北京化工大学图书馆,北京100029;
    2.国家自然科学基金委员会,北京100085;
    3.北京化工大学软物质科学与工程高精尖创新中心,北京100029
张杰(1965-),女,硕士,主要从事信息情报分析,学科服务,高分子材料研究,E-mail:zjie@mail.buct.edu.cn。

收稿日期: 2021-04-27

  修回日期: 2021-07-22

  网络出版日期: 2021-11-02

Research progress on organic photoelectric functional material based on highly cited papers from 17 journals

Expand
  • 1. Library of Beijing University of Chemical Technology,Beijing 100029;
    2. National Nature Science Foundation of China,Beijing 100085;
    3. Advanced Innovation Center for Soft Matter Science and Engineeringy,Beijing University of Chemical Technology,Beijing 100029

Received date: 2021-04-27

  Revised date: 2021-07-22

  Online published: 2021-11-02

摘要

对发表在Nature、Science等17个高质量期刊的高被引论文进行分析,探究了中国、美国、日本、欧洲等各主要国家/地区有机光电功能材料领域的研究特点。分析了中国在有机光电功能材料领域的领先优势及今后的发展方向。进一步结合热点论文及高被引文献引用频次top 1的文献得出该领域的研究关注热点:制备高效有机太阳能电池——通过给体、受体的设计合成新型聚合物,结构形貌调控,减少非辐射能量损失,制备三元有机太阳能电池、串联太阳能电池,太阳能光伏的材料界面工程研究等。此外,可印刷晶体管,皮肤电子的制造,单晶薄膜的喷墨打印,自旋在有机光伏再生动力学控制中的作用,有机光电材料的生物医用等也是人们关注的研究主题。

本文引用格式

张杰, 丁玉琴, 马劲, 张磊 . 有机光电功能材料的研究进展——以Nature/Science等高质量期刊发表的高被引论文为例[J]. 化工新型材料, 2021 , 49(10) : 19 -26 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.10.005

Abstract

The research characteristics of China,the United States,Japan,Europe and other major countries in organic photoelectric functional materials were investigated based on highly cited papers from 17 journals of Nature,Science,etc.Also the leading advantage and future development direction of China were analyzed.The research focus were efficient organic solar cells with design,synthesis and synergism of donor and acceptor,ternary organic solar cells,tandem solar cells,materials interface engineering,etc.Further more,printed transistors,skin electronics,organic semiconductor material,inkjet printing of single-crystal films,the role of spin in the kinetic control of recombination in organic photovoltaics,biomedical use,etc.based on top papers.

参考文献

[1] 孟瑞璇,卢秋霞,解士杰.2017年有机功能材料研发热点回眸[J].科技导报,2018,36(1):46-52.
[2] Wang S H,Xu J,Wang W C,et al.Skin electronics from scalable fabrication of an intrinsically stretchable transistor array[J].Nature,2018,555(7694):83-88.
[3] Meng L X,Zhang Y M,Wan X J,et al.Organic and solution-processed tandem solar cells with 17.3% efficiency[J].Science,2018,361(6407):1094-1098.
[4] Turren-Cruz S,Hagfeldt A,Saliba M.Methylammonium-free,high-performance,and stable perovskite solar cells on a planar architecture[J].Science,2018,362(6413):449-458.
[5] Li K,Wu Y S,Tang Y B,et al.Ternary blended fullerene-free polymer solar cells with 16.5% efficiency enabled with a higher-LUMO-level acceptor to improve film morphology[J].Advanced Energy Mterials,2019,9(33):1901728.
[6] Liu T,Gao W,Wang Y L,et al.Unconjugated side-chain engineering enables small molecular acceptors for highly efficient non-fullerene organic solar cells:insights into the fine-tuning of acceptor properties and micromorphology[J].Advanced Functional Materials,2019,29(26):1902155.
[7] Zhang S Q,Qin Y P,Zhu J,et al.Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor[J].Advanced Materials,2018,30(20):1800868.
[8] Zhang H,Yao H F,Hou J X,et al.Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors[J].Advanced Materials,2018,30(28):1800613.
[9] Xu X P,Feng K,Bi Z Z,et al.Single-junction polymer solar cells with 16.35% efficiency enabled by a platinum(ⅱ) complexation strategy[J].Advanced Materials,2019,31(29):1901872.
[10] Cui Y,Yao H F,Hong L,et al.Achieving over 15% efficiency in organic photovoltaic cells via copolymer design[J].Advanced Materials,2019,31(14):1808356.
[11] Yu R N,Yao H F,Cui Y,et al.Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells[J].Advanced Materials,2019,31(36):1902302.
[12] Fu H T,Wang Z H,Sun Y M.Polymer donors for high-performance non-fullerene organic solar cells[J].Angewandte Chemie International Edition,2019,58(14):4442-4453.
[13] Yao H F,Cui Y,Qian D P,et al.14.7% Efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference[J].Journal of the American Chemical Society,2019,141(19):7743-7750.
[14] Li S X,Zhan L L,Sun C K,et al.Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offset[J].Journal of the American Chemical Society,2019,141(7):3073-3082.
[15] Li S S,Ye L,Zhao W C,et al.A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells[J].Journal of the American Chemical Society,2018,140(23):7159-7167.
[16] Yao Z Y,Liao X F,Gao K,et al.Dithienopicenocarbazole-based acceptors for efficient organic solar cells with optoelectronic response over 1000nm and an extremely low energy loss[J].Journal of the American Chemical Society,2018,140(6):2054-2057.
[17] Wang J Y,Zhang J X,Xiao Y Q,et al.Effect of isomerization on high-performance nonfullerene electron acceptor[J].Journal of the American Chemical Society,2018,140(29):9140-9147.
[18] Sun H L,Liu T,Yu J W,et al.A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency[J].Energy & Environmental Science,2019,12(11):3328-3337.
[19] Liu T,Luo Z H,Chen Y Z,et al.A nonfullerene acceptor with a 1000nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%[J].Energy & Environmental Science,2019,12(8):DOI:10.1039/c9ee01030k.
[20] Liu T,Luo Z H,Fan Q P,et al.Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors[J].Energy & Environmental Science,2018(11):3275-3282.
[21] Cui Y,Yao H F,Zhang J Q,et al.Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages[J].Nature Communications,2019,10:2515.
[22] Yuan J,Huang T Y,Cheng P,et al.Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics[J].Nature Communications,2019,10:570.
[23] Zhang J Q,Tan H S,Guo X G,et al.Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors[J].Nature Energy,2018,3(9):720-731.
[24] Zhou Z C,Xu S J,Song J N,et al.High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors[J].Nature Energy,2018,3(11):952-959.
[25] Hou J H,Inganas O,Friend R H,et al.Organic solar cells based on non-fullerene acceptors[J].Nature Materials,2018,17(2):119-128.
[26] Qian D P,Zheng Z L,Yao H F,et al.Design rules for minimizing voltage losses in high-efficiency organic solar cells[J].Nature Materials,2018,17(8):703-709.
[27] Zhao B D,Bai S,Kim V,et al.High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes[J].Nature Photonics,2018,12(12):783-789.
[28] Cheng P,Li G,Zhan X W,et al.Next-generation organic photovoltaics based on non-fullerene acceptors[J].Nature Photonics,2018,12(3):131-142.
[29] Yan H,Chen Z H,Zheng Y,et al.A high-mobility electron-transporting polymer for printed transistors[J].Nature,2009,457(7230):679-687.
[30] Lee M M,Teuscher J,Miyasaka T,et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J].Science,2012,338(6107):643-647.
[31] Treat N D,Brady M A,Smith G,et al.Interdiffusion of PCBM and P3HT reveals miscibility in a photovoltaically active blend[J].Advanced Energy Materials,2011,1(1):82-89.
[32] Kim Y H S C,Machala M L,May C,et al.Highly conductive PEDOT∶PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells[J].Advanced Functional Materials,2011,21(6):1076-1081.
[33] Liang Y Y,Xu Z,Xia J B,et al.For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J].Advanced Materials,2010,22(20):E135-E138.
[34] Yin Z G,Wei J J,Zheng Q D.Interfacial materials for organic solar cells:recent advances and perspectives[J].Advanced Science,2016,3(8):1500362.
[35] Mishra A,Baeuerle P.Small molecule organic semiconductors on the move:promises for future solar energy technology[J].Angew Chem Int Ed,2012,51(9):2020-2067.
[36] Facchetti A.PI-conjugated polymers for organic electronics and photovoltaic cell applications[J].Chemistry of Materials,2011,23(3):733-758.
[37] Price S C,Stuart A C,Yang L Q,et al.Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells[J].Journal of the American Chemical Society,2011,133(12):4625-4631.
[38] Kippelen B,Bredas J L.Organic photovoltaics[J].Energy & Environmental Science,2009,2(3):251-261.
[39] Zhou H X,Yang L Q,You W.Rational design of high performance conjugated polymers for organic solar cells[J].Macromolecules,2012,45(2):607-632.
[40] Liu Y H,Zhao J B,Li Z K,et al.Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J].Nature Communications,2014,5:5293.
[41] Zhao J B,Li Y K,Yang G F,et al.Efficient organic solar cells processed from hydrocarbon solvents[J].Nature Energ,2016,1:15027.
[42] Sun Y M,Welch G C,Leong W L,et al.Solution-processed small-molecule solar cells with 6.7% efficiency[J].Nature Materials,2012,11(1):44-48.
[43] Park S H,Roy A,Beaupre S,et al.Bulk heterojunction solar cells with internal quantum efficiency approaching 100%[J].Nature Photonics,2009,3(5):297-303.
[44] Wu H,Kong D S,Ruan Z C,et al.A transparent electrode based on a metal nanotrough network[J].Nature Nanotechnology,2013,8(6):421-425.
[45] Yokota T,Zalar P,Kaltenbrunner M,et al.Ultraflexible organic photonic skin[J].Science Advances,2016,2(4):e1501856.
Options
文章导航

/