为了比较尼龙线法和上浆剂法两种织物定型方式对T800级薄型碳纤维织物及其预浸料性能的影响,对应制备了两种薄型织物环氧预浸料及其复合材料层合板。利用3D光学影像测量仪、金相显微镜等手段对纤维排布情况进行表征分析,并对层合板力学性能进行对比测试。结果表明:相较于仅局部固定纬向纤维束的尼龙线法,上浆剂法定型的薄型碳纤维织物经纬纤维束排列结构更加紧密稳定,透光率更小,由其制备的复合材料经向力学性能更优,其中经向拉伸强度高出前者30.2%。但两种复合材料纬向纤维偏移角的波动无较大差异,纬向力学性能基本相当。纤维排布情况的不同造成了上述力学性能的波动。
In order to compare the effects of two setting methods,nylon thread setting and sizing agent setting,of T800 thin carbon fabric(CF),two kinds of epoxy prepregs and composites were prepared.The fiber arrangement was characterized and analyzed by 3D optical image projector and metallographic microscope.The mechanical properties of the composites were tested and compared.The results shown that compared with the thin fabric shaped in nylon thread setting method that only the fiber bundles in weft direction were partially fixed,the other one shaped by sizing agent had smaller light transmittance with more compact and stable fiber arrangement,and its composite performed better mechanical property in warp direction,whose tensile strength in warp direction was 30.2% higher than that of the former.However,there was no significant difference in the fluctuation of weft deviation angle and the mechanical properties in weft direction of two kinds of composites were basically same.The different arrangement of warp and weft fibers resulted in the fluctuation of the above mechanical properties.
[1] 康欣然,朱书华,何梦临,等.超薄碳纤维预浸料复合材料国内外发展现状和趋势[J].航空工程进展,2016,7(1):7-16.
[2] Dong C,Zhou J,Ji X,et al.Study of the curing process of carbon fiber reinforced resin matrix composites in autoclave processing-science direct[J].Procedia Manufacturing,2019,37:450-458.
[3] 张广成,张鸿鸣,徐恒元,等.碳纤维/环氧树脂超薄预浸料成型工艺及胶膜匹配性研究[J].航空制造技术,2018,61(14):40-44.
[4] 曹忠亮,富宏亚,付云忠,等.基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J].材料导报,2019,33(5):894-900.
[5] 杜韫哲,崔超,孔宪志,等.ZnO纳米棒提高碳纤维增强树脂基复合材料界面性能[J].化学与粘合,2019,41(5):323-327,343.
[6] 陈燕,葛恩德,傅玉灿,等.碳纤维增强树脂基复合材料制孔技术研究现状与展望[J].复合材料学报,2015,32(2):301-316.
[7] Costa M L,Botelho E C,Paiva J M F D,et al.Characterization of cure of carbon/epoxy prepreg used in aerospace field[J].Materials Research,2005,8(3):317-322.
[8] 包建文,蒋诗才,张代军.航空碳纤维树脂基复合材料的发展现状和趋势[J].科技导报,2018,36(19):52-63.
[9] 刘娟.含孔隙CFRP层合板的湿热老化与力学性能退化[D].哈尔滨:哈尔滨工业大学,2014.
[10] 乌云其其格,雷娜,李明.薄型碳纤维织物预浸料及其复合材料研究[J].高科技纤维与应用,2014,39(6):58-61.
[11] 刘军,朱星名,胡伯仁,等.基于超声引导法的薄层化碳纤维性能研究[J].热加工工艺,2014,43(8):108-109.
[12] 姚佳伟,贾紫娇,牛一凡.超薄T700/环氧树脂预浸料力学性能研究及微观结构表征[J].塑料工业,2017,45(11):104-106,124.
[13] Amacher R,Cugnoni J,Botsis J,et al.Thin ply composites:experimental characterization and modeling of size-effects[J].Composites Science and Technology,2014,101(8):121-132.
[14] Sihn S,Ran Y K,Kawabe K,et al.Experimental studies of thin-ply laminted composites[J].Composites Science and Technology,2007,67(6):996-1008.
[15] 林强,王玖,党万腾,等.超薄碳纤维预浸料制备复合材料力学性能研究[J].成都大学学报(自然科学版),2018,37(3):236-241,277.
[16] 彭公秋,钟翔屿,包建文.一种检测碳纤维织物透光率的试验方法:中国专利,ZL 202010267539.9[P].2020-07-10.
[17] 任志华,吴坚,于永玲.经典回归法计算织物紧度[J].纺织学报,2005,26(5):46-48.