先以泡沫镍(NF)为基底,采用浸渍法制备了碳纳米管/泡沫镍(CNTs/NF)复合电极,然后通过电泳沉积法在复合电极表面沉积一层石墨烯得到还原氧化石墨烯/CNTs/NF(rGO/CNTs/NF)复合材料,最后去除NF得到rGO/CNTs复合材料,并通过扫描电镜、X射线衍射、拉曼光谱对其形貌、物相、结构进行表征。在此基础上制备了rGO/CNTs/环氧树脂(rGO/CNTs/EP)复合涂层样品,研究了复合涂层表面在高压静电充电条件下的电荷耗散特性以及沿面闪络特性。结果表明:电化学沉积过程中还原了氧化石墨烯(GO)得到了rGO/CNTs复合材料;rGO/CNTs/EP复合涂层表面电阻率随填料的增加而减小;在高压静电充电后,涂层表面电荷随时间衰减,且衰减速率随rGO/CNTs添加量的增加而增大;复合涂层的闪络电压较EP涂层低,且随填料的增加而降低,而在积聚静电后略有提升。
A carbon nanotube/nickel foam (CNTs/NF) composite electrode was prepared by impregnation method,and then graphene/carbon nanotube/nickel foam (rGO/CNTs/NF) composite was obtained by electrophoretic deposition on the surface of the composite electrode.Finally,the graphene/carbon nanotube (rGO/CNTs) composite was obtained by removing foam nickel.The morphology,phase and structure were characterized by SEM,XRD and Raman spectrum.On this basis,the samples of graphene/carbon nanotubes/epoxy resin (rGO/CNTs/EP) composite coating were prepared.The surface electrostatic dissipation and flashover characteristics of the coating were studied under the condition of high voltage electrostatic charging.The results shown that:in the process of electrochemical deposition,the graphene oxide (GO) was successfully reduced and the rGO/CNTs composite was obtained during the electrochemical deposition process.The surface resistivity of the rGO/CNTs/EP coating decreased with the increase of filler.After high voltage electrostatic charging,the surface electrostatic of the coating decreased with time,and the decay rate increased with the increase of rGO/CNTs.The flashover voltage of rGO/CNTs coating was lower than that of EP coating,and decreased with the increase of filler,and increased slightly after the electrostatic accumulation.
[1] 中国航空工业基团公司复合材料技术中心.航空复合材料技术[M].北京:航空工业出版社,2013,5-10.
[2] 石国德.300kV飞机静电放电试验方法研究[D].沈阳:沈阳航空航天大学,2012.
[3] 黄锋,刘燕涛,代川川.BMS10-21Ⅳ型导电漆喷涂工艺优化研究[J].航空维修与工程,2018(3):74-75.
[4] 李健.A320系列飞机雷达罩的结构损伤与修理[J].航空维修与工程,2010(4):39-41.
[5] 吴连锋,刘艳明,王贤明,等.抗静电涂料研究概述[J].涂料工业,2016,46(8):75-76.
[6] 南峰,刘栓,蒲吉斌,等.导静电防腐涂料的研究进展[J].表面技术,2017,46(11):71.
[7] 王晓,王华进,李志士,等.石墨烯在涂料中的应用进展[J].中国涂料,2017,32(2):2-3.
[8] 葛士彬.石墨烯、石墨烯/碳纳米管的制备及其超级电容器性能研究[D].哈尔滨:哈尔滨工业大学,2009.
[9] Cao Y W,Feng J C,Wu P Y.Alkyl-functionalized graphene nanosheets with improved lipophilicity[J].Carbon,2010,48:1683-1685.
[10] 姜雄峰,朱志平,周艺,等.石墨烯/碳纳米管复合纳米材料改性导电涂料的性能[J].材料保护,2019,52(6):20-25.
[11] Li J S,Xie Y Z,Lu W B,et al.Flexible electromagnetic wave absorbing composite based on 3D rGO-CNT-Fe3O4 ternary films[J].Carbon,2018,129:76-84.
[12] 郏余晨.碳纳米管/石墨烯杂化材料的制备与研究[D].无锡:江南大学,2013.
[13] 夏富君.石墨烯基超级电容器电极的制备及其性能[D].青岛:中国石油大学,2013.
[14] 国防科学技术工业委员会.GJB 3007—97,防静电工作区技术要求[S].北京:国防科工委军标出版社,1997:2.
[15] 中国国家标准化管理委员会.GB 12158—2006,防止静电事故通用导则[S].北京:中国标准出版社,2006:1.
[16] 王邸博.直流电压下聚四氟乙烯表面电荷聚散及其对闪络特性的影响[D].重庆:重庆大学,2015.
[17] 汪沨,邱毓昌,张乔根,等.表面电荷积聚对绝缘子沿面闪络影响的研究[J].中国电力,2002,35(9):52-59.
[18] Hama H,Hikosaka T,Okabe S,et al.Cross-equipment study on charging phenomena of solid insulators in high voltage equipment[J].IEEE Transactions on Dielectrics & Electrical Insulation,2007,14(2):508-519.