科学研究

纳米介孔TiO2光催化剂对染料污水的去除研究

展开
  • 1.湖南工业大学,生物医用纳米材料与器件湖南省重点实验室,株洲412007;
    2.河南工程学院材料与化学工程学院,郑州450007
杨纯(1987-),男,博士,讲师,主要研究方向为光催化技术,E-mail:yangchunyc@hut.edu.cn。

收稿日期: 2021-03-25

  修回日期: 2021-06-08

  网络出版日期: 2021-09-07

基金资助

国家自然科学基金(52070078);河南省面上项目(212300410336);河南省高校科技创新人才(20HASTIT016);河南省科技攻关(202102310605)

Study on the removal of dye effluent by M-TiO2 photocatalyst

Expand
  • 1. Hunan Key Laboratory of Biomedical Nanomaterials and Devices,Hunan University of Technology,Zhuzhou 412007;
    2. School of Materials and Chemical Engineering,Henan University of Engineering,Zhengzhou 450007

Received date: 2021-03-25

  Revised date: 2021-06-08

  Online published: 2021-09-07

摘要

以四氯化钛为原料,采用一步水热法制备出具有介孔结构的二氧化钛(M-TiO2),并对其光催化性能进行研究。比表面积(BET)分析得出M-TiO2的孔径约为28nm,比表面积为59.554m2/g,孔容体积为0.3678cm3/g;光电性能测试结果表明,与商用催化剂P25相比,M-TiO2带隙宽度窄,吸收范围宽,对光的利用能力更高,瞬时光电流强、电子传输阻力小、空穴电子对分离速度快;通过光催化降解亚甲基蓝(MB),其降解效率较高,在80min降解率能达到89%;通过研究M-TiO2降解MB的作用机制,发现羟基自由基是降解的主要原因,空穴和超氧自由基起次要作用。

本文引用格式

杨纯, 李玥, 陈国峰, 周贵寅, 刘四化 . 纳米介孔TiO2光催化剂对染料污水的去除研究[J]. 化工新型材料, 2021 , 49(8) : 210 -214 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.08.045

Abstract

A mesoporous titanium dioxide (M-TiO2) was synthesized by one-step hydrothermal method using titanium terrachlorid,and studied the photocatalytic performance of M-TiO2.The result of BET analysis showed that the pore size of M-TiO2 was about 28nm,the specific surface area was 59.554m2/g,and the volume of entrance was 0.3678cm3/g.Compared with commercial catalyst P25,the M-TiO2 possessed the narrower band gap,wider absorption range,higher utilization of visible light,stronger instantaneous light current,lower electron transmission resistance and faster separation speed of hole electron pairs.The results of photocatalytic degradation of methylene blue (MB) experiment shown that the degradation efficiency was as high as 89% in 80 minutes.The mechanism of M-TiO2 degradation of MB shown that the hydroxyl radical was the main substance for degradation,while hole and superoxide radical played a secondary role.

参考文献

[1] 高巍.高浓度难降解有机工业废水处理技术评价[J].化工设计通讯,2020,46(12):164-165.
[2] 李玥,邵浦华,尹萍萍,等.三维In2S3/TiO2纳米复合材料的制备及光电性能[J].电镀与精饰,2018,40(8):1-5.
[3] Han J,Li Y,Yang L,et al.Mesoporous TiO2 with WO3 functioning as dopant and light-sensitizer:a highly efficient photocatalyst for degradation of organic compound[J].Journal of Hazardous Materials,2018,358:44-52.
[4] Wu T,Zhao H,Zhu X,et al.Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticles modulated by mixed-valent copper[J].Advanced Materials,2020,32(30):2000299.
[5] 白惊雷,杨斌盛,刘斌.Bi/C3N5光催化材料制备及降解活性[J].山西大学学报(自然科学版)2021,DOI:10.13451/j.sxu.ns.2020133.
[6] Wang W,Zhu S,Cao Y,et al.Edge-enriched ultrathin MoS2 embedded Yolk-shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution[J].Advanced Functional Materials,2019,29(36):1901958.
[7] Guzmán-Mar J L,Villanueva-Rodríguez M,Hinojosa-Reyes L.Application of semiconductor photocatalytic materials for the removal of inorganic compounds from wastewater[J].Photo Semic,2015:229-254.
[8] 苏锟仁,梁一机,林尔庆,等.Mn掺杂LiNbO3结构ZnTiO3的磁性和光电性质的第一性原理研究[J].人工晶体学报,2021,50(1):38-42,59.
[9] Kyzas G Z,Matis K A.Nanoadsorbents for pollutants removal:a review[J].Journal of Molecular Liquids,2015,203:159-168.
[10] 鲁蕴甜,王力春,邓靖,等.表面羧基化介孔TiO2高效处理低浓度阳离红GTL印染废水[J].绿色科技,2020(24):65-67.
[11] Xiong H,Wu L,Liu Y,et al.Controllable synthesis of mesoporous TiO2 polymorphs with tunable crystal structure for enhanced photocatalytic H2 production[J].Advanced Energy Materials,2019,9(31):1901634.
[12] Kuang M,Wang Y,Fang W,et al.Efficient nitrate synthesis via ambient nitrogen oxidation with Ru-doped TiO2/RuO2 electrocatalysts[J].Advanced Materials,2020,32(26):2002189.
[13] Liu Y,Chen X,Yu J,et al.Carbon-nanoplated CoS@TiO2 nanofibrous membrane:an interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction[J].Angewandte Chemie International Edition,2019,58(52):18903-18907.
[14] Xiao M,Zhang L,Luo B,et al.Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution[J].Angewandte Chemie International Edition,2020,59(18):7230-7234.
[15] Gao C,Wei T,Zhang Y,et al.A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution[J].Advanced Materials,2019,31(8):1806596.
[16] 肖维,张柯杰,傅炀杰,等.Bi/WO3复合光催化材料的制备及其抗菌性能[J].复合材料学报,2021,DOI:10.13801/j.cnki.fhclxb.20210312.002.
[17] Wu L,Zheng J,Wang L,et al.PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries[J].Angewandte Chemie International Edition,2019,58(3):811-815.
[18] Jiao L,Zhang C,Geng C,et al.Capture and catalytic conversion of polysulfides by in situ built TiO2-mxene heterostructures for lithium-sulfur batteries[J].Angewandte Chemie International Edition,2019,9(19):1900219.
[19] Zhang L,Liu Y,Zhao Z,et al.Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries[J].ACS Nano,2020,14(7):8495-8507.
[20] Mor G K,Shankar K,Paulose M,et al.Use of highly-ordered tio2 nanotube arrays in dye-sensitized solar cells[J].Nano Letters,2006,6(2):215-218.
[21] Zheng L,Teng F,Ye X,et al.Photo/electrochemical applications of metal sulfide/TiO2 heterostructures[J].Advanced Energy Materials,2020,10(1):1902355.
[22] Jo S,Verma P,Kuwahara Y,et al.Enhanced hydrogen production from ammonia borane using controlled plasmonic performance of Au nanoparticles deposited on TiO2[J].Journal of Materials Chemistry A,2017,5(41):21883-21892.
Options
文章导航

/