研究锂空气电池石墨烯正极介观传质的机理,采用Materials-studio软件构建包含石墨烯、H2O、OH-、Li+和O2的介观模型,并应用粗粒化分子动力学的方法对体系中各珠子的传质特性进行介观分析,研究温度、石墨烯层数、石墨烯种类和石墨烯浓度对H2O、OH-、Li+和O2各珠子扩散系数的影响,以及对Li+-OH-、H2O-O2各珠子径向分布函数的影响。结果表明,随着体系内温度的升高,H2O、OH-、Li+和O2的扩散系数增大,Li+-OH-、H2O-O2径向分布函数峰值降低,分布的有序性降低;随着石墨烯层数的增加,H2O、OH-、Li+和O2的扩散系数减小,Li+-OH-、H2O-O2径向分布函数的峰值不变;随着不同层数石墨烯种类和浓度的增加,H2O、OH-、Li+和O2的扩散系数减小。因此,控制体系温度,减少石墨烯的层数,有利于体系中各珠子扩散系数的提升,提升锂空气电池的整体性能。
The mechanism of positive electrode mesoscopic mass transfer of graphene in lithium-air battery was studied.Materials-studio software was used to construct mesoscopic models including graphene,H2O,OH-,Li+ and O2,and the mesoscopic analysis of mass transfer characteristics of each bead in the system was carried out by means of coarse-grained molecular dynamics,the effects of temperature,number of graphene layers,types of graphene and graphene concentration on the diffusion coefficients of each bead of H2O,OH-,Li+ and O2,as well as the radial distribution functions of each bead of Li+-OH- and H2O-O2 were studied.The results shown that with the increase of temperature in the system,the diffusion coefficients of H2O,OH-,Li+ and O2 increased,the radial distribution function peak value of Li+-OH- and H2O-O2 decreased,and the distribution order decreased.As the number of graphene layers increased,the diffusion coefficients of H2O,OH-,Li+ and O2 decreased,and the peak values of the radial distribution functions of Li+-OH- and H2O-O2 remained unchanged.The diffusion coefficients of H2O,OH-,Li+ and O2 decreased with the increase of different graphene types and concentrations.Therefore,controlling the temperature of the system and reducing the number of graphene layers were conducive to the improvement of the diffusion coefficient of each bead in the system and the overall performance of the lithium-air battery.
[1] 蒋颉,刘晓飞,赵世勇,等.基于有机电解液的锂空气电池研究进展[J].化学学报,2014(4):9-18.
[2] 王芳,梁春生,徐大亮,等.锂空气电池的研究进展[J].无机材料学报,2012(12):4-13.
[3] Aurbach D,Mccloskey B D,Nazar L F,et al.Advances in understanding mechanismsunderpinning lithium-air batteries[J].Nature Energy,2016,1(9):16128.
[4] 郑明波,邱旦峰,庞欢,等.锂-空气电池研究进展[J].科技导报,2011(14):69-77.
[5] Luo Z,Yin C,Wu Q,et al.Research progress on air electrode in organic electrolyte lithium-air battery[J].Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering,2015,32(2):111-120.
[6] Thomas M L,Oda Y,Tatara R,et al.Suppression of water absorption by molecular design of ionic liquid electrolyte for Li-air battery[J].Advanced Energy Materials,2016:1601753.
[7] Wang Y,Zhou H.A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy[J].Journal of Power Sources,2010,195(1):358-361.
[8] Capsoni D,Bini M,Ferrari S,et al.Recent advances in the development of Li-air batteries[J].Journal of Power Sources,2012,220(none):253-263.
[9] Li L,Zhao X,Manthiram A.A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte[J].Electrochemistry Communications,2012,14(1):78-81.
[10] Luo Z,Yin C,Wu Q,et al.Research progress on air electrode in organic electrolyte lithium-air battery[J].Shenzhen Daxue Xuebao (Ligong Ban)/Journal of Shenzhen University Science and Engineering,2015,32(2):111-120.
[11] Wang B,Wang Y,Li J,et al.Catalytic reaction mechamism in the positive electrode interface of lithium air battery[J].Materials China,2015,48(3):385-391.
[12] Wei W,Wang D W,Yang Q H.Carbon-based material for a lithium-air battery[J].Carbon,2015,81:850.
[13] 孙红,曲则强,李强.全钒液流电池正极传质的介观分析[J].沈阳建筑大学学报:自然科学版,2019,35(1):151-158.
[14] Sahapatsombut U,Cheng H,Scott K.Modelling of operation of a lithium-air battery with ambient air and oxygen-selective membrane[J].Journal of Power Sources,2014,249:418-430.
[15] Sandhu S S,Fellner J P,Brutchen G W.Diffusion-limited model for a lithium/air battery with an organic electrolyte[J].Journal of Power Sources,2007,164(1):365-371.
[16] 孙红,付晓迪,李强.全钒液流电池多孔负极内传质介观分析[J].沈阳建筑大学学报:自然科学版,2017(33):931.
[17] Xiao J,Mei D,Li X,et al.Hierarchically porous graphene as a lithium-air battery electrode[J].Nano Letters,2011,11(11):5071-5078.
[18] Luo W B,Chou S L,Wang J Z,et al.A metal-free,free-standing,macroporous graphene@g-C3N4 composite air electrode for high-energy lithium oxygen batteries[J].Small,2015,11(23):2817-2824.
[19] Kim J,Carlin J M,Smith S A,et al.Thermal restacking of graphene structure to improve lithium-air battery cyclability[J].Electrochemistry Communications,2016,70:43-46.
[20] 杨庆生,尚军军,刘夏.多层石墨烯的粗粒化分子动力学模型与力学性能[J].北京工业大学学报,2016(12):56-74.
[21] 赵梦尧,杨雪平,杨晓宁.石墨烯狭缝受限孔道中水分子的分子动力学模拟[J].物理化学学报,2015(8):63-72.