新材料与新技术

Cu-BTC/CNF自支撑电极的制备及在超级电容器中的应用

展开
  • 1.临沂大学化学化工学院,临沂276005;
    2.临沂科技职业学院,临沂276000
聂红娇(1989-),女,博士研究生,副教授,主要研究方向为纳米材料的制备及相关电化学应用,E-mail:niehongjiao@lyu.edu.cn。

收稿日期: 2020-04-26

  修回日期: 2021-05-13

  网络出版日期: 2021-09-07

基金资助

山东省自然科学基金(ZR2019PB018)

Synthesis of free-standing Cu-BTC/CNF electrode for supercapacitor

Expand
  • 1. School of Chemistry & Chemical Engineering,Linyi University,Linyi 276005;
    2. Linyi Vocational University of Science and Technology,Linyi 276000

Received date: 2020-04-26

  Revised date: 2021-05-13

  Online published: 2021-09-07

摘要

以静电纺丝制备的碳纳米纤维(CNF)膜为支撑体,通过表面氧化处理和原位生长,制备了自支撑Cu-BTC/CNF复合电极,并研究了其在超级电容器中的电化学性能。由于CNF膜基体的三维网络结构有效提高了电极的导电性和离子传输能力,Cu-BTC/CNF复合电极在超级电容器中的电化学性能得到了显著提高。研究结果表明,自支撑Cu-BTC/CNF复合电极在1A/g时的放电容量达到263.3F/g,相比CNF电极提升了1.82倍。此外,Cu-BTC/CNF复合电极还具有良好的倍率性能和循环稳定性。

本文引用格式

聂红娇, 于跃, 宋兰兰 . Cu-BTC/CNF自支撑电极的制备及在超级电容器中的应用[J]. 化工新型材料, 2021 , 49(8) : 106 -110 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.08.022

Abstract

Free-standing Cu-BTC/CNF composite electrode was prepared based on electrospun carbon nanofibers (CNF) membrane as support,through the surface oxidation treatment and in situ growth for supercapacitor.Due to the 3D network structure of the CNF membrane,which could effectively improve the conductivity and ion transport of the electrode,the electrochemical performance of Cu-BTC/CNF got improved significantly,which delivered a gravimetric capacitance of 263.3F/g at 1A/g,about 1.82 times higher than CNF electrode.In addition,the Cu-BTC/CNF also had good rate performance and cycle stability.

参考文献

[1] She Z W,Kibsgaard J,Dickens C F,et al.Combining theory and experiment in electrocatalysis:ensights into materials design[J].Science,2017,355(6321):4998-5000.
[2] Simon P,Gogotsi Y.Materials for electrochemical capacitors[J].Nat Mater,2008,7:845-854.
[3] Sun J,Li W,Zhang B,et al.3D core/shell hierarchies of MnOOH ultrathin nanosheets grown on NiO nanosheet arrays for high-performance supercapacitors[J].Nano Energy,2014,4:56-64.
[4] Li Y,Zhang Y,Zhang H,et al.A facile approach to prepare a flexible sandwich-structured supercapacitor with rGO-coated cotton fabric as electrodes[J].RSC Adv,2019,9:4180-4189.
[5] González A,Goikolea E,Barrena J A.Review on supercapacitors:technologies and materials[J].Renew Sust Energy Rev,2016,58:1189-1206.
[6] Liu T,Zhang F,Yu S,et al.Revitalizing carbon supercapacitor electrodes with hierarchical porous structures[J].J Mater Chem A,2017,5(34):17705-17733.
[7] Liu X,Shi C,Zhai C,et al.Cobalt-based layered metal-organic framework as an ultrahigh capacity supercapacitor electrode Material[J].ACS Appl Mater Interfaces,2016,8(7):4585-4591.
[8] 欧阳金波,那兵,周利民,等.基于MOF结构的超级电容器电极材料研究进展[J].东华理工大学学报:自然科学版,2018,41(3):267-270.
[9] Yang J,Xiong P,Zheng C.Metal-organic frameworks:a new promising class of materials for a high performance supercapacitor electrode[J].J Mater Chem A,2014,2(39):16640-16644.
[10] Choi K,Jeong M,Park J H.Supercapacitors of nanocrystalline metal-organic frameworks[J].ACS Nano,2014,8(7):7451-7457.
[11] Sundriyal S,Mishra S.A deep study of manganese-1,4-benzenedicarboxylate metal organic framework electrodes based solid state symmetrical supercapacitor[J].Energy Procedia,2019,158:5817-5824.
[12] Xu X,Shi W,Li P,et al.Facile fabrication of three-dimensional graphene and metal-organic framework composites and their derivatives for flexible all-solid-state supercapacitors[J].Chem Mater,2017,29(14):6058-6065.
[13] Wang L,Feng X,Ren L,et al.Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI[J].J Am Chem Soc,2015,137(15):4920-4923.
[14] Gao Y,Wu J,Zhang W.The electrochemical performance of SnO2 quantum dots@zeolitic imidazolate frameworks-8(ZIF-8) composite material for supercapacitors[J].Mater Lett,2014,128:208-211.
[15] Zhang W,Wu Z Y,Jiang H L,et al.Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis[J].J Am Chem Soc,2014,136(41):14385-14388.
[16] Chen L F,Lu Y,Yu L,et al.Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J].Energy Environ Sci,2017,10(10):1777-1783.
[17] Deitzel J M,Kleinmeyer J,Harris D,et al.The effect of processing variables on the morphology of electrospun nanofibers and textiles[J].Polymer,2001,42:261-272.
[18] Chen L F,Lu Y,Yu L,et al.Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J].Energy Environ Sci,2017,10(10):1777-1783.
[19] Chen W,Yan L.In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures[J].Nanoscale,2011,3(10):3132-3137.
[20] Li J,Sheng X H.Surface oxidation of carbon fiber on tribological properties of PEEK composites[J].Mater Sci Technol,2009,25(8):1051-1056.
Options
文章导航

/