综述与专论

碳基材料光热水蒸发研究进展

展开
  • 北京化工大学,北京100029
李习标(1995-),男,硕士研究生,主要研究方向为太阳能光热海水淡化。

收稿日期: 2020-04-17

  修回日期: 2021-06-11

  网络出版日期: 2021-09-07

Research progress on carbon based material for solar steam generation

Expand
  • Beijing University of Chemical Technology,Beijing 100029

Received date: 2020-04-17

  Revised date: 2021-06-11

  Online published: 2021-09-07

摘要

光热界面水蒸发利用微纳结构设计,对空气/水的界面进行局域加热来减少热量的损失,极大提高了水蒸发效率,是近年来研究的一个热点。目前高效的光热水蒸发系统主要集中在自漂浮的全亲水碳基材料上。随着界面水蒸发系统光热转换效率的提高,制备高效、耐久的光热水蒸发器件是界面光热水蒸发的关键问题。着重介绍了碳基光热材料的类型和提高碳基材料光吸收率的方法,并对碳基界面水蒸发系统的结构进行了分类;随后从腐蚀和结构的角度介绍了影响系统耐久性的因素,并总结归纳了相应的解决办法;最后对光热界面水蒸发的未来发展方向进行了展望。

本文引用格式

李习标, 关昌峰, 阎华, 李好义, 石美浓, 杨卫民, 左夏华 . 碳基材料光热水蒸发研究进展[J]. 化工新型材料, 2021 , 49(8) : 21 -27 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.08.005

Abstract

The solar energy is considered as a kind of safe and sustainable green energy.Solar energy can be utilized in steam and vapor generation processes which has a great importance in desalination,sewage treatment,sterilization and power generation.As a hot topic in recent years,photothermal interfacial evaporation is by the way of designing microstructure or nanostructure as photothermal evaporation interface,which is heated locally by sunlight to reduce heat loss,so that photothermal interfacial evaporation efficiency is improved.The current study is focused on self-floating all hydrophilic carbon based materials.With the improvement of the energy conversion efficiency of the interface water evaporation system,the preparation of efficient and durable evaporation device is vital to interfacial evaporation.The types of carbon based photothermal materials and the methods to improve the light absorption of carbon based materials were introduced,and classified the structure of carbon based interface water evaporation system.Then,the factors which affected the durability of the system from the perspective of corrosion and structure were analyzed.The corresponding solutions were also summarized.Finally,the future development of photothermal interface water evaporation was prospected.

参考文献

[1] 董丹,秦红,刘重裕,等.太阳能光伏/热(PV/T)技术的研究进展[J].化工进展,2013,32(5):1020-1024.
[2] 王峥,任毅.我国太阳能资源的利用现状与产业发展[J].资源与产业,2010,12(2):89-92.
[3] Iodicep,Langella G,Amoresano A,et al.Modeling and energetic-exergetic evaluation of a novel screwexpanderbased direct steam generation solar system[J].Applied Thermal Engineering,2019,155:82-95.
[4] Qin C Y,Kim J B,Gonome H,et al.Absorptioncharacteristics of nanoparticles with sharp edges for a direct-absorption solar collector[J].Renewable Energy,2020,145:21-28.
[5] Mahian,Kolsi L,Amani M,et al.Recent advances in modeling and simulation of nanofluidflows-part Ⅰ:fundamental and theory[J].Phys Rep,2019,790:1-48.
[6] 阮国岭,冯厚军.国内外海水淡化技术的进展[J].中国给水排水,2008(20):86-90.
[7] Xu Y,Ma J X,Han Y,et al.Multifunctional CuO nanowire mesh for highly efficient solar evaporation and water purification[J].ACS Sustainable Chem,2019,7:5476-5485.
[8] Li J L,Du M H,Lv G X,et al.Interfacial solar steam generation enables fast responsive,energy-efficient,and low-cost off-grid sterilization[J].Adv Mater,2018,30:1805159.
[9] Yang P H,Liu K,Chen Q,et al.Solar-driven simultaneous steam production and electricity generation from salinity[J].Energy & Environmental Science,2017,10(9):1865-2046.
[10] 张凇源,关欣,王殿华,等.太阳能光伏光热利用的研究进展[J].化工进展,2012,31(S1):323-327.
[11] 刘海舟,喻小强,李金磊,等.基于等离激元微纳结构的太阳能界面光蒸汽转换[J].中国科学,2019,49(12):124203.
[12] Tao P,Ni G,Song C Y,et al.Solar-driven interfacial evaporation[J].Nature Energy,2018,3:1031-1041.
[13] Ghasemi H,Ni G,Marconnet A M,et al.Solar steam generation by heat localization[J].Nat Commun,2014,5:4449.
[14] Zhong J X,Huang C L,Wu D X,et al.Influence factors of the evaporation rate of a solar steam generation system:a numerical study[J].International Journal of Heat and Mass Transfer,2019,128:860-864.
[15] Zhong J,Huang C,Wu D,et al.Surrounding effects on the evaporation efficiency of a bi-layered structure for solar steam generation[J].Appl Therm Eng,2018,144:331-341.
[16] Li Y R,Jin X,Zheng Y D,et al.Tunable water delivery in carbon-coated fabrics for high-efficiency solar vapor generation[J].ACS Appl Mater Interfaces,2019,11(50):46938-46946.
[17] Zhang L,Tang B,Wu J,et al.Hydrophobic light-to-heat conversion membranes with self-Healing ability for interfacial solar heating[J].Advanced Materials,2015,27:4889-4894.
[18] Xu W C,Hu X Z,Zhuang S D,et al.Flexible and salt resistant Janus absorbers by electrospinning for stable andefficientsolar desalination[J].Advanced Energy Materials,2018,8:1702884.
[19] Jun Y S,Wu X H,Ghim D,et al.Photothermal membrane water treatment for two worlds[J].Acc Chem Res,2019,52:1215-1225.
[20] Li H R,He Y R,Jiang B,et al.A flexible thin-film membrane with broadband Ag/TiO2 nanoparticle for high-efficiency solar evaporation enhancement[J].Energy,2017,139:210-219.
[21] Chen J X,Feng J,Li Z W,et al.Space-confined seeded growth of black silver nanostructures for solar steam generation[J].Nano Lett,2019,19:400-407.
[22] Li B,Wang Q,Zou R J,et al.Cu7.2S4 nanocrystals:a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells[J].Nanoscale,2014,6(6):3274-3282.
[23] Wu X,Robsona M,Jlpa B,et al.[J].Nano Energy,2019,56:708-715.
[24] Wang J,Li Y,Deng L,et al.High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J].Adv Mater,2017,29(3):1603730.
[25] Yao J D,Zheng Z Q,Yang G W,et al.Alloying-assisted phonon engineering of layered BiInSe3 nickel foam for efficient solar-enabled water evaporation[J].Nanoscale,2017:9(42):16396-16403.
[26] 魏天骐,李秀强,李金磊.界面光蒸汽转化研究进展[J].科学通报,2018,63:1405-1416.
[27] Miaoe D,Ye M,Guo Y,et al.Enhanced solar steam generation using carbon nanotube membrane distillation device with heat localization[J].Applied Thermal Engineering,2019,149:1255-1264.
[28] Zhou X Y,Zhao F,Guo Y H,et al.Architecting highly hydratable polymer networks to tune the water state for solar water purification[J].Sci Adv,2019,5(6):5484.
[29] Li G J,Law W C,Chan K C,et al.Floating,highly efficient,and scalable graphene membranes for seawater desalination using solar energy[J].Green Chem,2018,20:3689-3695.
[30] Tao F J,Zhang Y L,Wang B B,et al.Graphite powder/semipermeable collodion membrane composite for water evaporation[J].Solar Energy Materials and Solar Cells,2018,180:34-45.
[31] Sun H Y,Li Y Z,Zhu Z Q,et al.Photothermal conversion material derived from used cigarette filters for solar steam generation[J].Chem Sus Chem,2019,12(18):201901503.
[32] Yang E,Kim C M,Song J H,et al.Enhanced desalination performance of forward osmosis membranes based on reduced graphene oxide laminates coated with hydrophilic polydopamine[J].Carbon,2017,117:293-300.
[33] Liu Z J,Song H M,Ji D X,et al.Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper[J].Global Challenges,2017,1:1600003.
[34] Hota S,Diaz G.Activated carbon dispersion asabsorber for solar waterevaporation:A parametric analysis[J].Solar Energy,2019,184:40-51.
[35] Luo X,Huang C L,Liu S,et al.High performance of carbon-particle/bulk-wood bi-layer system for solar steam generation[J].Energy Res,2018,42:4830-4839.
[36] Zhao X,Zha X J,Pu J H,et al.Macroporous three-dimensional MXenearchitectures for highly efficient solar steam generation[J].Journal of Materials Chemistry A,2019,17( ): - .
[37] Wang H,Yang W M,Cheng L S,et al.Chinese ink:high performance nanofluids for solar energy[J].Solar Energy Materials & Solar Cells,2017,176.
[38] Ding Q,Guan C F,Li H Y,et al.Solar-driven interfacial evaporation based on double-layer polylactic acid fibrous membranes loading Chinese ink nanoparticles[J].Solar Energy,2020,195:636-643.
[39] Wang Y C,Wang C Z,Song Z J,et al.A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation[J].Mater Chem A,2018,6:963-971.
[40] Feng X M,Zhao J L,Sun D W,et al.Novel onion-like graphene aerogel beads for efficient solar vapor generation under nonconcentrated illumination[J].Mater Chem A,2019,7:4400-4407.
[41] 朱盟盟,曾文霞,吴大雄,等.Ag@Ag2S/C光热转换材料的制备及其太阳能水蒸发性能研究[J].青岛科技大学学报(自然科学版),2019,40(3):65-70.
[42] Yin Z,Wang H M,Jian M Q,et al.Extremely black vertically aligned carbon nanotube arrays for solar steam generation[J].ACS Appl Mater Interfaces,2017,9:28596-28603.
[43] Miao E D,Ye M Q,Guo C L,et al.Enhanced solar steam generation using carbon nanotube membrane distillation device with heat localization[J].Appl Therm Eng,2019,149:1255-1264.
[44] 朱盟盟.碳基太阳能吸收材料的制备及其光热性能研究[D].青岛:青岛科技大学,年份.
[45] Chen Z J,Dang B,Luo X F,et al.Deep eutectic solvent-assisted in situ wood delignification:a promising strategy to enhance efficiency of wood-based solar steam generation devices[J].ACS Appl Mater Interfaces,2019,11(29):26032-26037.
[46] Hao D D,Yang Y D,Xu B,et al.Efficient solar water vapor generation enabled by water-absorbing polypyrrole coated cotton fabric with enhanced heat localization[J].Applied Thermal Engineering,2018:141:406-412.
[47] Wang X,Liu Q C,Wu S Y,et al.Multilayer polypyrrolenanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J].Adv Mater,2019,31:1807716.
[48] Liu P F,Miao L,Deng Z Y,et al.Flame-treated and fast-assembled foam system for direct solar steam generation and non-plugging high salinity desalination with self-cleaning effect[J].Applied Energy,2019,241:652-659.
[49] Li H R,He Y R,Hu Y W,et al.Commercially available activated carbon fiber felt enables efficient solar steam generatio[J].ACS Appl Mater Interfaces,2018,10:9362-9368.
[50] Jia J,Liang W D,Sun H,et al.Fabrication of bilayer edattapulgite for solar steam generation with high conversion efficiency[J].Chemical Engineering Journal,2019,361:999-1006.
[51] Zhu M M,Yu J L,Ma C L,et al.Carbonized daikon for high efficient solar steam generation[J].Solar Energy Materials and Solar Cells,2019,191:83-90.
[52] Gong F,Li H,Wang Y,et al.Scalable,eco-friendly andultrafast solar steam generators based onone-step melamine-derived carbon sponges toward water purification[J].Nano Energy,2019:58:322-330.
[53] Ma S N,Qarony W,Hossain M I,et al.Metal-organic framework derived porous carbon of light trapping structures for efficient solar steam generation[J].Solar Energy Materials and Solar Cells,2019:196:36-42.
[54] Ammar H,Elsheikh,Swellam W,et al.Thin film technology for solar steam generation:a new dawn[J].Solar Energy,2019,177:561-575.
[55] Li T T,Fang Q,Xi X F,et al.Ultra-robust carbon fibers for multi-media purification via solar-evaporation[J].Mater Chem A,2019,7:586-593.
[56] Hong S,Shi Y,Li R Y,et al.Nature-inspired,3D origami solar steam generator toward near full utilization of solar energy[J].ACS Appl Mater Interfaces,2018,10:28517-28524.
[57] Zhou X Y,Zhao F,Guo Y H.Architecting highly hydratable polymer networks to tune the water state for solar water purification[J].Sci Adv,2019,5:5484.
[58] Guo Y H,Zhao F,Zhou X Y,et al.Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation[J].Nano Lett,2019,19:253-2536.
[59] Zhao F,Zhou X Y,Ye S,et al.Highly efficient solar vapour generation via hierarchically nanostructured gels[J].Nature Nanotechnology,2018,13:489-495.
[60] Mu P,Bai W,Fan Y K,et al.Conductive hollow kapok fiber-PPy monolithic aerogels with excellent mechanical robustness for efficient solar steam generation[J].Mater Chem A,2019,7:9673-9679.
[61] Mu P,Zhang Z,Bai W,et al.Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation[J].Adv Energy Mater,2019,9:1802158.
[62] Fang J,Liu J,Gu J J,et al.Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation[J].Chem Mater,2018,30:6217-6221.
[63] Liu J,Liu Q L,Ma D L,et al.Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation[J].Mater Chem A,2019,7:9034-9039.
[64] Zhang P P,Liu F,Liao Q H,et al.A Microstructured graphene/poly(N-isopropylacrylamide) membrane for intelligent solar water evaporation[J].Chem Int Ed,2018,57:16343-16347.
[65] Liu F H,Zhao B Y,Wu W P,et al.Low cost,robust,environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation[J].Funct Mater,2018,28:1803266.
[66] Xu Y,Xu H B,Zhu Z G,et al.A mechanically durable,sustained corrosion-resistant photothermall nanofiber membrane for highly efficient solar distillation[J].Mater Chem A,2019,7:22296-22306.
[67] Bae K,Ku B J,Kim Y J,et al.Black diatom colloids toward efficient photothermal converters for solar-to-steam generation[J].ACS Appl Mater Interfaces,2019,11:4531-4540.
[68] Zhu B,Kou H,Liu Z X,et al.Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater[J].ACS Appl Mater Interfaces,2019,11(38):35005-35014.
[69] Zhu B,Wu B,Chen Z G,et al.Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight[J].ACS Applied Materials & Interfaces,2019,11:35005.
[70] Xu Y,Liu D Q,Xiang H L.Easily scaled-up photo-thermal membrane with structure-dependent autocleaning feature for high-efficient solar desalination[J].Journal of Membrane Science,2019:586:222-230.
[71] Kuang Y D,Chen C J,He S,et al.A high-performance self-regenerating solar evaporator for continuous water desalination[J].Advanced Materials,2019,31:1900498.
[72] Song X Y,Song H C,Xu N,et al.Omnidirectional and effective salt-rejecting absorber with rationally designed nanoarchitecture for efficient and durable solar vapourgeneration[J].Mater Chem A,2018,6:22976.
[73] Xia Y,Hou Q F,Jubaer H,et al.Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting[J].Energy & Environmental Science,2019,12:1840-1847.
[74] Ma X,Fang W Z,Guo Y,et al.Hierarchical porous SWCNT stringed carbon polyhedrons and PSS threaded MOF bilayer membrane for efficient solar vapor generation[J].Environmental Applications Small,2019,15:1900354.
Options
文章导航

/