综述与专论

水合无机盐热化学储热材料及技术研究进展

展开
  • 郑州轻工业大学能源与动力工程学院,郑州450002
张雪龄(1986-),女,博士,硕士研究生导师,主要研究方向为多孔介质内流体流动与换热,E-mail:zhangxueling268@163.com。

收稿日期: 2020-07-02

  修回日期: 2021-05-06

  网络出版日期: 2021-09-07

基金资助

河南省重点研发与推广专项(科技攻关)(212102310411);国家自然科学基金(51604245和51906230)

Research progress on hydrated salt thermochemical heat storage material and technology

Expand
  • School of Energy and Power Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002

Received date: 2020-07-02

  Revised date: 2021-05-06

  Online published: 2021-09-07

摘要

水合盐热化学吸附储热技术具有储能密度高、热损低等优点,其在低品位能源回收利用等领域具有良好的研究前景。从储热密度,实验条件,循环稳定性等角度对热化学吸附储热单质水合盐、复合盐以及系统应用3个方面的研究热点及最新进展进行归纳总结,对化学吸附储热研究中存在的问题和技术缺陷进行了讨论和改进研究探讨。结果表明,对储热材料的传热传质强化以及系统的优化设计是未来热化学储能领域研究的重点。

本文引用格式

张雪龄, 雷旭东, 王菲菲, 王燕令, 张琦, 王玉静, 赵萧涵 . 水合无机盐热化学储热材料及技术研究进展[J]. 化工新型材料, 2021 , 49(8) : 6 -11 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.08.002

Abstract

The hydrated salt thermal chemical adsorption heat storage technology has the advantages of high energy storage density and low heat loss.It has good research prospects in the fields of low-grade energy recovery and utilization.The research hotspots and latest developments in the three aspects of thermochemical adsorption heat storage elemental hydrated salt,composite salt and system application were summarized from the perspective of heat storage density,experimental conditions,cycle stability,etc.The problems and technical defects were discussed and improved.The results shown that the enhancement of heat and mass transfer of heat storage materials and the optimal design of the system were the key points of future research in the field of thermochemical energy storage.

参考文献

[1] Schrader A J,Bush H E,Ranjan D,et al.Aluminum-doped calcium manganite particles for solar thermochemical energy storage:reactor design,particle characterization,and heat and mass transfer modeling[J].International Journal of Heat and Mass Transfer,2020,152:119461.1-119461.15.
[2] Calderon A,Barreneche C,Hernandezvalle K,et al.Where is thermal energy storage (TES) research going?-a bibliometric analysis[J].Solar Energy,2019,200:37-50.
[3] Zondag H,Kikkert B,Smeding S,et al.Prototype thermochemical heat storage with open reactor system[J].Applied Energy,2013,109:360-365.
[4] N'Tsoukpoe K E,Schmidt T,Rammelberg H U,et al.A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J].Applied Energy,2014,124:1-16.
[5] Lele A F,Ntsoukpoe K E,Osterland T,et al.Thermal conductivity measurement of thermochemical storage materials[J].Applied Thermal Engineering,2015,89(5):916-926.
[6] Yu N,Wang R Z,Lu Z S,et al.Evaluation of a three-phase sorption cycle for thermal energy storage[J].Energy,2014,67:468-478.
[7] Ferchaud C J,Zondag H,Rubino A,et al.Seasonal sorption heat storage-research on thermochemical materials and storage performance[C].Petten,the Netherlands:Heat Powerd Cycles,2012.
[8] Sogutoglu L C,Donkers P,Fischer H R,et al.Adan.In-depth investigation of thermochemical performance in a heat battery:cyclic analysis of K2CO3,MgCl2 and Na2S[J].Applied Energy,2018,215:159-173.
[9] Lele A F,Kuznik F,Opel O,et al.Performance analysis of a thermochemical based heat storage as an addition to cogeneration systems[J].Energy Conversion and Management,2015,106:1327-1344.
[10] Michel B Y,Mazet N,Mauran S,et al.Thermochemical process for seasonal storage of solar energy:characterization and modeling of a high density reactive bed[J].Energy,2012,47(1):553-563.
[11] Xu S Z,Wang R Z,Wang L W,et al.A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating[J].Energy Conversion and Management,2018,171:98-109.
[12] Boer R D,Haije W G,Veldhuis J B.Determination of structural thermodynamic and phase properties in the Na2S-H2O system for application in a chemical heat pump[J].Thermochimica Acta,2003,395(1-2):3-19.
[13] Yu N,Wang R Z,Wang L W.Sorption thermal storage for solar energy[J].Progress in Energy and Combustion Science,2013,39(5):489-514.
[14] Lele A F,N'Tsoukpoe K E,Osterland T,et al.Thermal conductivity measurement of thermochemical storage materials[J].Applied Thermal Engineering,2015,89:916-926.
[15] Palomba V,Frazzica A.Recent advancements in sorption technology for solar thermal energy storage applications[J].Solar Energy,2019,192:69-105.
[16] Sw A,Rui H B,Ys A,et al.Development of pomegranate-type CaCl2@C composites via a scalable one-pot pyrolysis strategy for solar-driven thermochemical heat storage[J].Energy Conversion and Management,2020,212:112694.
[17] Jabbari-Hichri A,Bennici S,Auroux A,CaCl2-containing composites as thermochemical heat storage materials[J].Solar Energy Materials and Solar Cells,2017,172:177-185.
[18] Ristić A,Zabukovec Logar N.New composite water sorbents CaCl2-PHTS for low-temperature sorption heat storage:determination of structural properties[J].Nanomaterials,2019,9(1):27.
[19] Courbon E,D'Ans P,Permyakova A,et al.Further improvement of the synthesis of silica gel and CaCl2 composites:enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J].Solar Energy,2017,157:532-541.
[20] Grekova A D,Gordeeva L G,Aristov Y I.Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage[J].Applied Thermal Engineering,2017,124:1401-1408.
[21] Zhang Y,Wang R,Li T,et al.Thermochemical characterizations of novel vermiculite-LiCl composite sorbents for low-temperature heat storage[J].Energies,2016,9(10):854.
[22] Zhang Y N,Wang R Z,Li T X.Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage[J].Energy,2018,156:240-249.
[23] Brancato V,Gordeeva L G,Grekova A D,et al.Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage[J].Solar Energy Materials and Solar Cells,2019,193:133-140.
[24] Xu S Z,Wang R Z,Wang L W,et al.Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage[J].Energy,2019,167:889-901.
[25] Calabrese L,Brancato V,Palomba V,et al.Magnesium sulphate-silicone foam composites for thermochemical energy storage:assessment of dehydration behaviour and mechanical stability[J].Solar Energy Materials and Solar Cells,2019,200:109992.
[26] Nguyen G T,Hwang H S,Park I.MgSO4 composites in a ferroaluminophosphate for enhancement of volumetric heat storage capacity at a low charging temperature[J].International Journal of Energy Research,2021,45:5177-5189.
[27] Whiting G T,Grondin D,Stosic D,et al.Zeolite-MgCl2 composites as potential long-term heat storage materials:influence of zeolite properties on heats of water sorption[J].Solar Energy Materials & Solar Cells,2014,128:289-295.
[28] Xu J X,Li T X,Chao J W,et al.High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J].Energy,2019,185:1131-1142.
[29] Zhou H,Zhang D.Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogelstabilized MgCl2·6H2O composites[J].Solar Energy,2019,184:202-208.
[30] Zhao Y,Wang R Z,Zhang Y N,et al.Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat[J].Energy,2016,115:129-139.
[31] Courbon E,Dans P,Permyakova A,et al.A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability[J].Applied Energy,2017,190:1184-1194.
[32] Dans P,Courbon E,Permyakova A,et al.A new strontium bromide MOF composite with improved performance for solar energy storage application[J].Journal of Energy Storage,2019,25:100881.
[33] Shkatulov A I,Houben J,Fischer H,et al.Stabilization of K2CO3 in vermiculite for thermochemical energy storage[J].Renewable Energy,2020,150:990-1000.
[34] Rammelberg H U,Osterland T,Priehs B,et al.Thermochemical heat storage materials:performance of mixed salt hydrates[J].Solar Energy,2016,136:571-589.
[35] Rehman A U,Khan M,Maosheng Z,et al.Hydration behavior of MgSO4-ZnSO4 composites for long-term thermochemical heat storage application[J].Journal of Energy Storage,2019,26:101026.
[36] Sutton R J,Jewell E,Searle J,et al.Discharge performance of blended salt in matrix materials for low enthalpy thermochemical storage[J].Applied Thermal Engineering,2018,145:483-493.
[37] Li W,Zeng M,Wang Q,et al.Development and performance investigation of MgSO4/SrCl2 composite salt hydrate for mid-low temperature thermochemical heat storage[J].Solar Energy Materials and Solar Cells,2020,210:110509.
[38] Clark R J,Mehrabadi A,Farid M.State of the art on salt hydrate thermochemical energy storage systems for use in building applications[J].Journal of Energy Storage,2020,27:101145.1-101145.18.
[39] Michel B,Neveu P,Mazet N.Comparison of closed and open thermochemical processes,for long-termthermal energy storage applications[J].Energy,2014,72:702-716.
[40] Scapino L,Zondag H A,Van Bael J,et al.Sorptionheat storage for long-term low-temperature applications:a review on the advancements at material and prototype scale[J].Applied Energy,2017,190:920-948.
[41] Sole A,Martorell I,Cabeza L F,et al.State of the art on gas-solid thermochemical energy storage systems and reactors for building applications[J].Renewable & Sustainable Energy Reviews,2015,47:386-398.
[42] Scapino L,Zondag H A,Van Bael J,et al.Sorptionheat storage for long-term low-temperature applications:a review on the advancements at material and prototype scale[J].Applied Energy,2017,190:920-948.
[43] Scapino L,Zondag H A,Van Bael J,et al.Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storagesystems for low-temperature space heating[J].Renewable & Sustainable Energy Reviews,2017,76:1314-1331.
[44] Nagel T,Beckert S,Lehmann C,et al.Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds-a review[J].Applied Energy,2016,178:323-345.
[45] Xu C,Yu Z,Xie Y,et al.Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage[J].Applied Thermal Engineering,2018,129:250-259.
[46] Casey S P,Aydin D,Elvins J,et al.Salt impregnated desiccant matrices for ‘open’ thermochemical energy conversion and storage-Improving energy densityutilisation through hygrodynamic & thermodynamic reactor design[J].Energy Conversion and Management,2017,142:426-440.
[47] Farcot L,Pierres N L,Fourmigue J,et al.Experimental investigation of a moving-bed heat storage thermochemical reactor with SrBr2/H2O couple[J].Journal of Energy Storage,2019,26:101009.
[48] Wyttenbach J,Bougard J,Descy G,et al.Performances and modelling of a circular moving bed thermochemical reactor for seasonal storage[J].Applied Energy,2018,230:803-815.
[49] Courbon E,D'Ans P,Permyakova A,et al.A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability[J].Applied Energy,2017,190:1184-1194.
[50] Michel B,Mazet N,Neveu P.Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy:global performance[J].Applied Energy,2014,129:177-186.
[51] Michel B Y,Mazet N,Neveu P,et al.Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solarenergy:local reactive bed evolution[J].Applied Energy,2016,180:234-244.
[52] Aydin D,Casey S P,Chen X,et al.Novel “open-sorption pipe” reactor for solar thermal energy storage[J].Energy Conversion & Management,2016,121:321-334.
[53] Weber R,Kerskes H,Druck H,et al.Development of a combined hot water and sorption store for solar thermal systems[J].Energy Procedia,2014,48:464-473.
[54] Fopah-Lele A,Rohde C,Neumann K,et al.Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger[J].Energy,2016,114:225-238.
[55] 赵彦杰.无机盐/水热化学吸附储热的理论和实验研究[D].上海:上海交通大学,2016.
Options
文章导航

/