[1] Schrader A J,Bush H E,Ranjan D,et al.Aluminum-doped calcium manganite particles for solar thermochemical energy storage:reactor design,particle characterization,and heat and mass transfer modeling[J].International Journal of Heat and Mass Transfer,2020,152:119461.1-119461.15.
[2] Calderon A,Barreneche C,Hernandezvalle K,et al.Where is thermal energy storage (TES) research going?-a bibliometric analysis[J].Solar Energy,2019,200:37-50.
[3] Zondag H,Kikkert B,Smeding S,et al.Prototype thermochemical heat storage with open reactor system[J].Applied Energy,2013,109:360-365.
[4] N'Tsoukpoe K E,Schmidt T,Rammelberg H U,et al.A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J].Applied Energy,2014,124:1-16.
[5] Lele A F,Ntsoukpoe K E,Osterland T,et al.Thermal conductivity measurement of thermochemical storage materials[J].Applied Thermal Engineering,2015,89(5):916-926.
[6] Yu N,Wang R Z,Lu Z S,et al.Evaluation of a three-phase sorption cycle for thermal energy storage[J].Energy,2014,67:468-478.
[7] Ferchaud C J,Zondag H,Rubino A,et al.Seasonal sorption heat storage-research on thermochemical materials and storage performance[C].Petten,the Netherlands:Heat Powerd Cycles,2012.
[8] Sogutoglu L C,Donkers P,Fischer H R,et al.Adan.In-depth investigation of thermochemical performance in a heat battery:cyclic analysis of K2CO3,MgCl2 and Na2S[J].Applied Energy,2018,215:159-173.
[9] Lele A F,Kuznik F,Opel O,et al.Performance analysis of a thermochemical based heat storage as an addition to cogeneration systems[J].Energy Conversion and Management,2015,106:1327-1344.
[10] Michel B Y,Mazet N,Mauran S,et al.Thermochemical process for seasonal storage of solar energy:characterization and modeling of a high density reactive bed[J].Energy,2012,47(1):553-563.
[11] Xu S Z,Wang R Z,Wang L W,et al.A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating[J].Energy Conversion and Management,2018,171:98-109.
[12] Boer R D,Haije W G,Veldhuis J B.Determination of structural thermodynamic and phase properties in the Na2S-H2O system for application in a chemical heat pump[J].Thermochimica Acta,2003,395(1-2):3-19.
[13] Yu N,Wang R Z,Wang L W.Sorption thermal storage for solar energy[J].Progress in Energy and Combustion Science,2013,39(5):489-514.
[14] Lele A F,N'Tsoukpoe K E,Osterland T,et al.Thermal conductivity measurement of thermochemical storage materials[J].Applied Thermal Engineering,2015,89:916-926.
[15] Palomba V,Frazzica A.Recent advancements in sorption technology for solar thermal energy storage applications[J].Solar Energy,2019,192:69-105.
[16] Sw A,Rui H B,Ys A,et al.Development of pomegranate-type CaCl2@C composites via a scalable one-pot pyrolysis strategy for solar-driven thermochemical heat storage[J].Energy Conversion and Management,2020,212:112694.
[17] Jabbari-Hichri A,Bennici S,Auroux A,CaCl2-containing composites as thermochemical heat storage materials[J].Solar Energy Materials and Solar Cells,2017,172:177-185.
[18] Ristić A,Zabukovec Logar N.New composite water sorbents CaCl2-PHTS for low-temperature sorption heat storage:determination of structural properties[J].Nanomaterials,2019,9(1):27.
[19] Courbon E,D'Ans P,Permyakova A,et al.Further improvement of the synthesis of silica gel and CaCl2 composites:enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J].Solar Energy,2017,157:532-541.
[20] Grekova A D,Gordeeva L G,Aristov Y I.Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage[J].Applied Thermal Engineering,2017,124:1401-1408.
[21] Zhang Y,Wang R,Li T,et al.Thermochemical characterizations of novel vermiculite-LiCl composite sorbents for low-temperature heat storage[J].Energies,2016,9(10):854.
[22] Zhang Y N,Wang R Z,Li T X.Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage[J].Energy,2018,156:240-249.
[23] Brancato V,Gordeeva L G,Grekova A D,et al.Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage[J].Solar Energy Materials and Solar Cells,2019,193:133-140.
[24] Xu S Z,Wang R Z,Wang L W,et al.Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage[J].Energy,2019,167:889-901.
[25] Calabrese L,Brancato V,Palomba V,et al.Magnesium sulphate-silicone foam composites for thermochemical energy storage:assessment of dehydration behaviour and mechanical stability[J].Solar Energy Materials and Solar Cells,2019,200:109992.
[26] Nguyen G T,Hwang H S,Park I.MgSO4 composites in a ferroaluminophosphate for enhancement of volumetric heat storage capacity at a low charging temperature[J].International Journal of Energy Research,2021,45:5177-5189.
[27] Whiting G T,Grondin D,Stosic D,et al.Zeolite-MgCl2 composites as potential long-term heat storage materials:influence of zeolite properties on heats of water sorption[J].Solar Energy Materials & Solar Cells,2014,128:289-295.
[28] Xu J X,Li T X,Chao J W,et al.High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J].Energy,2019,185:1131-1142.
[29] Zhou H,Zhang D.Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogelstabilized MgCl2·6H2O composites[J].Solar Energy,2019,184:202-208.
[30] Zhao Y,Wang R Z,Zhang Y N,et al.Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat[J].Energy,2016,115:129-139.
[31] Courbon E,Dans P,Permyakova A,et al.A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability[J].Applied Energy,2017,190:1184-1194.
[32] Dans P,Courbon E,Permyakova A,et al.A new strontium bromide MOF composite with improved performance for solar energy storage application[J].Journal of Energy Storage,2019,25:100881.
[33] Shkatulov A I,Houben J,Fischer H,et al.Stabilization of K2CO3 in vermiculite for thermochemical energy storage[J].Renewable Energy,2020,150:990-1000.
[34] Rammelberg H U,Osterland T,Priehs B,et al.Thermochemical heat storage materials:performance of mixed salt hydrates[J].Solar Energy,2016,136:571-589.
[35] Rehman A U,Khan M,Maosheng Z,et al.Hydration behavior of MgSO4-ZnSO4 composites for long-term thermochemical heat storage application[J].Journal of Energy Storage,2019,26:101026.
[36] Sutton R J,Jewell E,Searle J,et al.Discharge performance of blended salt in matrix materials for low enthalpy thermochemical storage[J].Applied Thermal Engineering,2018,145:483-493.
[37] Li W,Zeng M,Wang Q,et al.Development and performance investigation of MgSO4/SrCl2 composite salt hydrate for mid-low temperature thermochemical heat storage[J].Solar Energy Materials and Solar Cells,2020,210:110509.
[38] Clark R J,Mehrabadi A,Farid M.State of the art on salt hydrate thermochemical energy storage systems for use in building applications[J].Journal of Energy Storage,2020,27:101145.1-101145.18.
[39] Michel B,Neveu P,Mazet N.Comparison of closed and open thermochemical processes,for long-termthermal energy storage applications[J].Energy,2014,72:702-716.
[40] Scapino L,Zondag H A,Van Bael J,et al.Sorptionheat storage for long-term low-temperature applications:a review on the advancements at material and prototype scale[J].Applied Energy,2017,190:920-948.
[41] Sole A,Martorell I,Cabeza L F,et al.State of the art on gas-solid thermochemical energy storage systems and reactors for building applications[J].Renewable & Sustainable Energy Reviews,2015,47:386-398.
[42] Scapino L,Zondag H A,Van Bael J,et al.Sorptionheat storage for long-term low-temperature applications:a review on the advancements at material and prototype scale[J].Applied Energy,2017,190:920-948.
[43] Scapino L,Zondag H A,Van Bael J,et al.Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storagesystems for low-temperature space heating[J].Renewable & Sustainable Energy Reviews,2017,76:1314-1331.
[44] Nagel T,Beckert S,Lehmann C,et al.Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds-a review[J].Applied Energy,2016,178:323-345.
[45] Xu C,Yu Z,Xie Y,et al.Study of the hydration behavior of zeolite-MgSO4 composites for long-term heat storage[J].Applied Thermal Engineering,2018,129:250-259.
[46] Casey S P,Aydin D,Elvins J,et al.Salt impregnated desiccant matrices for ‘open’ thermochemical energy conversion and storage-Improving energy densityutilisation through hygrodynamic & thermodynamic reactor design[J].Energy Conversion and Management,2017,142:426-440.
[47] Farcot L,Pierres N L,Fourmigue J,et al.Experimental investigation of a moving-bed heat storage thermochemical reactor with SrBr2/H2O couple[J].Journal of Energy Storage,2019,26:101009.
[48] Wyttenbach J,Bougard J,Descy G,et al.Performances and modelling of a circular moving bed thermochemical reactor for seasonal storage[J].Applied Energy,2018,230:803-815.
[49] Courbon E,D'Ans P,Permyakova A,et al.A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability[J].Applied Energy,2017,190:1184-1194.
[50] Michel B,Mazet N,Neveu P.Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy:global performance[J].Applied Energy,2014,129:177-186.
[51] Michel B Y,Mazet N,Neveu P,et al.Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solarenergy:local reactive bed evolution[J].Applied Energy,2016,180:234-244.
[52] Aydin D,Casey S P,Chen X,et al.Novel “open-sorption pipe” reactor for solar thermal energy storage[J].Energy Conversion & Management,2016,121:321-334.
[53] Weber R,Kerskes H,Druck H,et al.Development of a combined hot water and sorption store for solar thermal systems[J].Energy Procedia,2014,48:464-473.
[54] Fopah-Lele A,Rohde C,Neumann K,et al.Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger[J].Energy,2016,114:225-238.
[55] 赵彦杰.无机盐/水热化学吸附储热的理论和实验研究[D].上海:上海交通大学,2016.