[1] Hu M,Keblinski P,Wang J,et al.Interfacial thermal conductance between silicon and a vertical carbon nanotube[J].Journal of Applied Physics,2008,104(8):83503.
[2] Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56.
[3] Novoselov K S.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[4] Kim P,Shi L,Majumdar A,et al.Thermal transport measurements of individual multiwalled nanotubes[J].Physical Review Letters,2001,87(21):215002.
[5] Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
[6] 吴熔琳,邵铮铮,石剑豪,等.3ω方法测量微纳米材料热物性研究进展[J].材料导报,2013,27(S2):91-94.
[7] Hsu I K,Pettes M T,Bushmaker A,et al.Optical absorption and thermal transport of individual suspended carbon nanotube bundles[J].Nano Letters,2009,9(2):590-594.
[8] Fujii M,Zhang X,Xie H,et al.Measuring the thermal conductivity of a single carbon nanotube[J].Physical Review Letters,2005,95(6):65502.
[9] Choi T Y,Poulikakos D,Tharian J,et al.Measurement of thermal conductivity of individual multi-walled carbon nanotubes by the method[J].Applied Physics Letters,2005,87(1):13108.
[10] Choi T Y,Poulikakos D,Tharian J,et al.Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method[J].Nano Letters,2006,6(8):1589-1593.
[11] Pop E,Mann D,Wang Q,et al.Thermal conductance of an individual single-wall carbon nanotube above room temperature[J].Nano Letters,2006,6(1):96-100.
[12] 王照亮,梁金国,唐大伟.单根单壁碳纳米管导热系数随长度变化尺度效应的实验和理论[J].物理学报,2008,57(6):3391-3396.
[13] Li Q,Liu C,Wang X,et al.Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method[J].Nanotechnology,2009,20(14):145702.
[14] Bushmaker A W,Deshpande V V,Bockrath M W,et al.Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes[J].Nano Lett,2007,7(12):3618-3622.
[15] Balandin A A.Thermal properties of graphene and nanostructured carbon materials[J].Nature Materials,2011,10(8):569-581.
[16] Wang Z,Xie R,Bui C T,et al.Thermal transport in suspended and supported few-layer graphene[J].Nano Letters,2011,11(1):113-118.
[17] Seol J H,Jo I,Moore A L,et al.Two-dimensional phonon transport in supported graphene[J].Science,2010,328(5975):213-216.
[18] Ghosh S,Bao W,Nika D L,et al.Dimensional crossover of thermal transport in few-layer graphene[J].Nature Materials,2010,9(7):555-558.
[19] Chen S,Wu Q,Mishra C,et al.Thermal conductivity of isotopically modified graphene[J].Nature Materials,2012,11(3):203-207.
[20] Bae M H,Li Z,Aksamija Z,et al.Ballistic to diffusive crossover of heat flow in graphene ribbons[J].Nature Communications,2013,4:1734.
[21] Lee J U,Yoon D,Kim H,et al.Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy[J].Physical Review B,2011,83(8):081419.
[22] Cai W,Moore A,Chen S,et al.Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition[C].Dallas Texas:APS March Meeting,2011.
[23] Berber S,Kwon Y K,Tománek D.Unusually high thermal conductivity of carbon nanotubes[J].Physical Review Letters,2000,84(20):4613-4616.
[24] Che J,Tahir C,Goddard W A.Thermal conductivity of carbon nanotubes[J].Nanotechnology,2000,11(2):65-69.
[25] Grujicic M,Cao G,Roy W N.Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes[J].Journal of Materials Science,2005,40(8):1943-1952.
[26] Lukes J R,Zhong H.Thermal conductivity of individual single-wall carbon nanotubes[J].Journal of Heat Transfer,2007,129(6):705-716.
[27] Osman M A,Srivastava D.Tempreture dependence of the thermal conductivity of single-wall carbon nanotubes[J].Nanotechnology,2000,12(1):21.
[28] Thomas J A,Iutzi R M,Mcgaughey A J H.Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes[J].Physical Review B,2010,81(4):045413.
[29] Cao A,Qu J.Size dependent thermal conductivity of single-walled carbon nanotubes[J].Journal of Applied Physics,2012,112(1):013503.
[30] Maruyama S.A molecular dynamics simulation of heat conduction in finite length SWNTs[J].Physica B,2002,323(1-4):193-195.
[31] 侯泉文,曹炳阳,过增元.碳纳米管的热导率:从弹道到扩散输运[J].物理学报,2009,58(11):423-428.
[32] 侯泉文,曹炳阳,过增元.碳纳米管热导率的分子动力学研究[J].工程热物理学报,2009,30(7):129-131.
[33] Zhang G,Li B.Thermal conductivity of nanotubes revisited:effects of chirality,isotope impurity,tube length,and temperature[J].The Journal of Chemical Physics,2005,123(11):114714.
[34] Alaghemandi M,Algaer E,Böhm M C,et al.The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations[J].Nanotechnology,2009,20(11):115704.
[35] Kondos N,Yamamoto T,Watanabe K.Molecular-dynamics simulations of thermal transport in carbon nanotubes with structural defects.e-Journal of Surface Science and Nanotechnology,2007,4(0):239-243.
[36] 李威,冯妍卉,张欣欣,等.掺杂、吸附和空位缺陷对碳纳米管导热的影响[J].化工学报,2012,63(S1):75-83.
[37] Hu J,Ruan X,Chen Y P.Thermal conductivity and thermal rectification in graphene nanoribbons:a molecular dynamics study[J].Nano Letters,2009,9(7):2730-2735.
[38] Zhang H,Lee G,Cho K.Thermal transport in graphene and effects of vacancy defects[J].Physical Review B,2011,84(11):44-53.
[39] Wei N,Xu L Q,Wang H Q,et al.Strain engineering of thermal conductivity in graphene sheets and nanoribbons:a demonstration of magic flexibility[J].Nanotechnology,2011,22(10):105705.
[40] Yeo J J,Liu Z,Ng T Y.Comparing the effects of dispersed stone-thrower-wales defects and double vacancies on the thermal conductivity of graphene nanoribbons[J].Nanotechnology,2012,23(38):385702.
[41] Cao Ajing.Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometries[J].Journal of Applied Physics,2012,111(8):83528.
[42] Ng T Y,Yeo J J,Liu Z S.A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed stone-thrower-wales defects[J].Carbon,2012,50(13):4887-4893.
[43] Yang D,Ma F,Sun Y,et al.Influence of typical defects on thermal conductivity of graphene nanoribbons:an equilibrium molecular dynamics simulation[J].Applied Surface Science,2012,258(24):9926-9931.
[44] Yu C X,Zhang G.Impacts of length and geometry deformation on thermal conductivity of graphene nanoribbons[J].Journal of Applied Physics,2013,113(4):044306.
[45] Xu X,Pereira L F C,Wang Y.Length-dependent thermal conductivity in suspended single-layer graphene[J].Nature Communications,2014,5(1).
[46] Yang L,Chen J,Yang N.Significant reduction of graphene thermal conductivity by phononic crystal structure[J].International Journal of Heat and Mass Transfer,2015,91:428-432.
[47] Cao B,Yao W,Ye Z.Networked nanoconstrictions:an effective route to tuning the thermal transport properties of graphene[J].Carbon,2015,96:711-719.
[48] 邹济杭,叶振强,曹炳阳.势能模型对石墨烯导热性质分子动力学模拟的影响[J].计算物理,2017,34(2):221-229.
[49] Pereira L F C,Donadio D.Divergence of the thermal conductivity in uniaxially strained graphene[J].Physical Review B,2013,87(12):125424.
[50] Mortazavi B,Rajabpour A,Ahzi S,et al.Nitrogen doping and curvature effects on thermal conductivity of graphene:a non-equilibrium molecular dynamics study[J].Solid State Communications,2012,152(4):261-264.
[51] Si C,Li L,Lu G,et al.A comprehensive analysis about thermal conductivity of multi-layer graphene with N-doping,—CH3 group,and single vacancy[J].Journal of Applied Physics,2018,123:135101.
[52] Li W,Carrete J,Katcho N A,et al.ShengBTE:a solver of the boltzmann transport equation for phonons[J].Computer Physics Communications,2014,185(6):1747-1758.
[53] Wang F Q,Yu J,Wang Q,et al.Lattice thermal conductivity of penta-graphene[J].Carbon,2016,105:424-429.
[54] Li C,Debnath B,Tan X.Commensurate lattice constant dependent thermal conductivity of misoriented bilayer graphene[J].Carbon,2018,138:451-457.
[55] Qin G,Qin Z,Wang H,et al.On the diversity in the thermal transport properties of graphene:a first-principles-benchmark study testing different exchange-correlation functionals[J].Computational Materials Science,2018,151:153-159.