预先合成出纳米粒子Pd@Pt和Pt,再将其负载到金属有机骨架UiO-66上,制备出负载型催化剂Pd@Pt/UiO-66和Pt/UiO-66。利用红外光谱(FT-IR)、紫外可见光谱(UV-Vis)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、比表面积及孔径分析仪(BET)和热重分析仪(TG)等手段对催化剂进行了表征,并对其在不同条件下的CO2加氢催化效率进行了系统研究。结果表明:制备的负载型催化剂Pd@Pt/UiO-66和Pt/UiO-66具有优异的催化性能和长效稳定性。
Nanoparticles Pd@Pt and Pt were synthesized in advance,and then embedded on the metal-organic framework UiO-66 to prepare catalysts Pd@Pt/UiO-66 and Pt/UiO-66.Utilized infrared spectrum (FT-IR),ultraviolet visible spectrum (UV),X-ray diffractometer (XRD),scanning electron microscope (SEM),transmission electron microscope (TEM),specific surface area and aperture analyzer (BET) and thermogravimetric analyzer (TG) characterized the catalysts,and systematically studied catalytic efficiency for CO2 hydrogenation under different conditions.The results shown that Pd@Pt/UiO-66 and Pt/UiO-66 had excellent catalytic performance and long-term stability.
[1] 赖洁,杨楠,袁健发,等.电化学催化还原二氧化碳研究进展[J].新能源进展,2019,7(5):429-435.
[2] 孙增智,薛程,宋莉芳,等.金属有机骨架化合物的二氧化碳吸附性能的研究进展[J].材料导报,2019,33(2):541-549.
[3] 刘辉,彭响方,曾和平.金属有机框架化合物在二氧化碳捕获及分离中的应用[J].化学发展前沿:中英文版,2013,3(4):63-76.
[4] 单彤文,宋鹏飞,李又武,等.制氢、储运和加注全产业链氢气成本分析[J].天然气化工(C1化学与化工),2020,45(1):85-90,96.
[5] 吉力强,赵英朋,王凡,等.氢能技术现状及其在储能发电领域的应用[J].金属功能材料,2019,26(6):23-31.
[6] Jack Joshua,Park Eunsol,Maness Pin-Ching,et al.Selective ligand modification of cobalt porphyrins for carbon dioxide electrolysis:generation of a renewable H2/CO feedstock for downstream catalytic hydrogenation[J].Inorganica Chimica Acta,2020,507(7):119594.
[7] Carlotta Panzone,Régis Philippe,Alban Chappaz,et al.Power-to-Liquid catalytic CO2 valorization into fuels and chemicals:focus on the Fischer-Tropsch route[J].Journal of CO2 Utilization,2020,38:314-347.
[8] 彭琪,谭正德,区泽棠,等.CeO2掺杂CuO/TiO2纳米材料的合成及CO2光催化还原[J].湖南工程学院学报(自然科学版),2019,29(2):71-78.
[9] 代兴超,王斌,王爱勤,等.Pd/PAL催化二氧化碳、氢气和胺反应合成甲酰胺(英文)[J].催化学报,2019,40(8):1141-1151.
[10] 雷文,肖卫平,王得丽.用于二氧化碳电化学还原反应的铜基催化剂研究进展[J].电化学,2019,25(4):455-466.
[11] 徐兴良,李莉萍,张丹,等.金属纳米复合催化剂合成与应用的最新进展[J].无机化学学报,2017,33(11):1970-1990.
[12] 黄刚,陈玉贞,江海龙.金属有机骨架材料在催化中的应用[J].化学学报,2016,74(2):113-129.
[13] 朱雅婷,赵云霞,陈钰文,等.金属有机框架(MOFs)材料电催化还原CO2研究进展[J].化工环保,2020,40(1):21-25.
[14] Singh K,Kukkar D,Singh R,et al.In situ green synthesis of Au/Ag nanostructures on a metal-organic framework surface for photocatalytic reduction of p-nitrophenol[J].Journal of Industrial and Engineering Chemistry,2019,81:196-205.
[15] Zhang Shujuan,Liu Li,Yang Jieyu,et al.Pd-Ru-Bi nanoalloys modified three-dimensional reduced graphene oxide/MOF-199 composites as a highly efficient electrocatalyst for ethylene glycol electrooxidation[J].Applied Surface Science,2019,492:617-625.
[16] Tan Haocun,Chen Dongyun,Li Najun,et al.Platinum-supported zirconia nanotube arrays supported on graphene aerogels modified with metal-organic frameworks:adsorption and oxidation of formaldehyde at room temperature[J].Chemistry,2019,25:16718-16724.
[17] Li Shuai,Mei Hongmin,Yao Shilin,et al.Well-distributed Pt-nanoparticles within confined coordination interspaces of self-sensitized porphyrin metal-organic frameworks:synergistic effect boosting highly efficient photocatalytic hydrogen evolution reaction[J].Chemical Science,2019,10(45):10577-10585.
[18] Liu Yi,Ma Xiaochen,Chang Ganggang,et al.Synergistic catalysis of Pd nanoparticles with both Lewis and Bronsted acid sites encapsulated within a sulfonated metal-organic frameworks toward one-pot tandem reactions[J].Journal of Colloid and Interface Science,2019,557:207-215.
[19] Jin M,Liu H,Zhang H,et al.Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10nm for application in CO oxidation[J].Nano Research,2010,4(1):83-91.
[20] Zhang L,Roling L T,Wang X,et al.Platinum-based nanocages with subnanometer-thick walls and well-defined,controllable facets[J].Science,2015,349(6246):412-416.
[21] Garibay Sergio J,Cohen Seth M.Isoreticular synthesis and modification of frameworks with the UiO-66 topology[J].Chemical communications (Cambridge,England),2010,46(41):7700-7702.