以茶叶体内的螺旋导管为模板,通过水热处理制备了氟化铕(EuF3)/螺旋碳微米纤维(HCFs)复合结构。通过X射线衍射(XRD)、场扫描电子显微镜(SEM)和红外光谱(FT-IR)等对样品的物相、结构和形貌进行了表征。结果表明,水热碳化后,生物体内的螺旋导管结构得到了完美保留。室温下光致发射光谱和荧光寿命测试结果显示,在317nm激发波长下,Eu3+与HCFs间发生能量转移现象,使HCFs在紫外光区354nm处发射明显增强,这表明Eu3+/HCFs复合材料是一种新型的紫外发射材料。
王伟, 张志华, 曹奇益, 祝淑媛, 文亚东, 王刚, 王志俊, 孙宇峰, 陶锋
. EuF3/螺旋碳微米纤维(HCFs)复合结构的制备和发光性能[J]. 化工新型材料, 2021
, 49(7)
: 73
-77
.
DOI: 10.19817/j.cnki.issn 1006-3536.2021.07.017
EuF3/helical carbon microfibers (HCFs) with composite structure was prepared by hydrothermal method using spiral vessels (SVs) in tea-leaves as template.The phase,structure and morphology of the samples were characterized by X-ray diffraction (XRD),field emission scanning electron microscopy (SEM) and infrared spectroscopy.The results showed that the helical structure was perfectly preserved after hydrothermal carbonization.The results of photoluminescence spectra and fluorescence lifetime at room temperature showed that the energy transfer between Eu3+ and HCFs occurred at the excitation wavelength of 317nm,which significantly enhanced the emission of helical carbon micron fiber at 354nm in the ultraviolet region,indicating that Eu3+/HCFs was a new type of ultraviolet emission material.
[1] Kozak O,Sudolska M,Pramanik G,et al.Photoluminescent carbon nanostructures[J].Chem Mat,2016,28(12):4085-4128.
[2] Gupta B K,Shanker V,Arora M,et al.Photoluminescence and electron paramagnetic resonance studies of springlike carbon nanofibers[J].Appl Phys Lett,2009,95(7):3.
[3] Deeney C,Wang S X,Belhout S A,et al.Templated microwave synthesis of luminescent carbon nanofibers[J].RSC Adv,2018,8(23):12907-12917.
[4] Hikita M,Cao L,Lafdi K.Optical properties of carbon microcoils[J].Appl Phys Lett,2014,104(4):4.
[5] Chen Y,Xu J F,Liu B T,et al.Enhanced photoluminescence properties of carbon dots by doping with europium[J].J Nanosci Nanotechnol,2016,16(4):3735-3738.
[6] Wen J F,Zhang Y,Tang N J,et al.Synthesis,photoluminescence,and magnetic properties of nitrogen-doping helical carbon nanotubes[J].J Phys Chem C,2011,115(25):12329-12334.
[7] 王莹,李勇,朱靖,等.氧化石墨烯表面稀土改性机理[J].材料工程,2018,46(5):29-35.
[8] 王福,李艾,郝玉翠,等.氧化石墨烯/氧化铕复合材料粉体的光催化性能研究[J].粉末冶金工业,2016,26(2):8-11.
[9] 杨辉煌.纳米氧化钌及其与氮掺杂碳纳米管复合材料的制备与性能研究[D].北京:北京化工大学,2017.
[10] 赵永霞.石墨烯/稀土氧化物的制备及其性能研究[D].兰州:西北师范大学,2012.
[11] 吴江.碳量子点增强稀土离子荧光的研究[D].南京:东南大学,2016.
[12] Raghubanshi H,Dikio E D,Naidoo E B.The properties and applications of helical carbon fibers and related materials:a review[J].J Ind and Eng Chem,2016,44:23-42.
[13] Chen X Q,Zhang S L,Dikin D A,et al.Mechanics of a carbon nanocoil[J].Nano Lett,2003,3(9):1299-1304.
[14] Raghubanshi H,Dikio E D.Synthesis of helical carbon fibers and related materials:a review on the past and recent developments[J].Nanomaterials,2015,5(2):937-968.
[15] Tang L B,Ji R B,Cao X K,et al.Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots[J].ACS Nano,2012,6(6):5102-5110.
[16] Lin J,Feng C C,He X,et al.Europium(Ⅲ) organic complexes in porous boron nitride microfibers:efficient hybrid luminescent material[J].Scientific Reports,2016,6:7.
[17] Gray D G.Isolation and handedness of helical coiled cellulosic thickenings from plant petiole tracheary elements[J].Cellulose,2014,21(5):3181-3191.
[18] Yang Q M,Duan J L,Yang W,et al.Nitrogen-doped carbon quantum dots from biomass via simple one-pot method and exploration of their application[J].Appl Surf Sci,2018,434:1079-1085.
[19] Huo Q Y,Tu W X,Guo L.Enhanced photoluminescence property and broad color emission of ZnGa2O4 phosphor due to the synergistic role of Eu3+ and carbon dots[J].Opt Mater,2017,72:305-312.
[20] Pan D Y,Zhang J C,Li Z,et al.Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J].Adv Mater,2010,22(6):734-738.