三明治结构的石墨烯/TiO2复合材料具备双向导电通道等特点,从而提高了光生电子对分离与迁移速率,使其光催化性能显著提高。主要介绍了三明治结构石墨烯/TiO2复合材料的制备方法及其在光催化领域的应用,对目前研究所遇到的问题进行了总结,并对其发展趋势进行了展望。
The graphene/TiO2 composite material with sandwich structure improves the separation and migration rate of photo-generated electron pairs due to the characteristics of two-channel electronic conduction route,which significantly improves its photocatalytic performance.The preparation method of sandwich structure graphene/TiO2 composite material and its application in the field of photocatalysis were mainly introduced,and summarized on this basis.Finally,the development trend of the graphene/TiO2 with sandwich structure was prospected.
[1] Fujishima A,Honda K.Electrochemicalphotolysis of water at a semiconductor electrode[J].Nature,1972,238(5358):37-38.
[2] Kmetyko A,Szaniel A,Tsakiroglou C,et al.Enhanced photocatalytic H2 generation on noble metal modified TiO2 catalysts excited with visible light irradiation[J].Reaction Kinetics,Mechanisms and Catalysis,2016,117(1):379-390.
[3] Zou K S,Dong G Z,Liu J C,et al.Effects of calcination temperature and Li+ ions doping on structure and upconversion luminescence properties of TiO2∶Ho3+-Yb3+ nanocrystals[J].Journal of Materials Science & Technology,2019,35(4):483-490.
[4] 勾明雷,段欣瑞,袁云霞,等.TiO2-GO复合光催化剂的制备及其对硝基酚类污染物的降解性能[J].化工新型材料,2019,47(11):111-114.
[5] 孙媛.叶绿素类染料敏化纳米TiO2光催化产氢的研究[D].长春:吉林大学,2018.
[6] 徐秀娟,秦金贵,李振.石墨烯研究进展[J].化学进展,2009,21(12):2559-2567.
[7] Liang J C,Wang J,Zhou M X,et al.A graphene-SnO2-TiO2 ternary nanocomposite electrode as a high stability lithium-ion anode material[J].Journal of Alloys and Compounds,2016,673:144-148.
[8] Li Z Q,Wang H L,Zi L Y,et al.Preparation and photocatalytic performance of magnetic TiO2-Fe3O4/graphene(RGO) composites under VIS-light irradiation[J].Ceramics International,2015,41(9):10634-10643.
[9] Yu S Y,Huang X.Photodegradation of soluble microbial products(SMPs) from membrane bioreactor by GO-COOH/TiO2/Ag[J].Journal of Environmental Sciences,2020,88(2):292-300.
[10] Wu H T,Fan J,Yang Y H,Liu E Z,et al.Hydrothermal synthesis of Graphene-TiO2 nanowire with an enhanced photocatalytic activity[J].Russian Journal of Physical Chemistry A,2015,89(7):1189-1194.
[11] Jo W K,Kumar S,A.Isaacs M,et al.Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red[J].Applied Catalysis B:Environmental,2017,201,159-168.
[12] Liang H,Zhang B,Ge H,et al.Porous TiO2/Pt/TiO2 sandwich catalyst for highly selective semihydrogenation of alkyne to olefin[J].ACS Catalysis,2017,7(10):6567-6572.
[13] Wu H P,He D W,Wang Y S,et al.Preparation of sandwich-like TiO2/Graphene/TiO2 films and its application in photocatalysis[J].Advanced Materials Research,2012,1666(930):80-85.
[14] Li W,Wang F,Liu Y P,et al.General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage[J].Nano Letters,2015,15(3):2186-2193.
[15] Yang S,Feng X,Müllen K.Sandwich-like,graphene-based titania nanosheets with high surface area for fast lithium storage[J].Advanced Materials,2011,23(31):3575-3579.
[16] 江雪玲.中空CeO2@TiO2/RGO复合光催化剂的制备及其降解性能研究[D].四川:成都理工大学,2018.
[17] 王明贵.基于二氧化钛空心复合材料的制备及其光催化性能研究[D].扬州:扬州大学,2017.
[18] 吕婷.氧化钛基复合光催化材料的制备及性能研究[D].西安:陕西科技大学,2016.
[19] 李腾飞.石墨烯-二氧化钛复合材料制备及其光催化降解橙黄Ⅱ染料废水的研究[D].扬凌:西北农林科技大学,2017.
[20] Hu C Y,Chen F,Lu T W.Water-phase strategy for synthesis of TiO2-graphene composites with tunable structure for high performance photocatalysts[J].Applied Surface Science,2014,317:648-656.
[21] Yao W W,Li Y H,Yan D X.Fabrication and photocatalysis of TiO2-graphene sandwich nanosheets with smooth surface and controlled thickness[J].Chemical Engineering Journal,2013,229:569-576.
[22] Wang M,Han J,Xiong H.Nanostructured hybrid shells of r-GO/AuNP/m-TiO2 as highly active photocatalysts[J].ACS Applied Materials & Interfaces,2015,7(12):6909-6918.
[23] 涂文广.二氧化钛纳米复合材料的结构调控及其光催化还原CO2为可再生碳氢燃料的研究[D].南京:南京大学,2015.
[24] Chen L,Zhou Y,Tu W J,Li Z D.An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets:graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane.advanced functional materials[J].Advancd Functional Materials,2012,23(14):1743-1749.