采用静电纺丝技术,以木质纳米纤维素晶体(CNC)、聚丙烯酸(PAA)和碱性副品红(BF)为原料,经高温处理,添加戊二醛(GA)进行交联,制得pH响应性PAA/CNC/BF复合纤维材料。探究了复合样品的力学强度、交联度、颜色变化、溶胀效果,确定并优化了复合纤维材料的原料与配方,系统地研究了复合材料的多元复合机理与刺激(pH)-响应(色变与形变)机制。结果表明:CNC在极大增强PAA复合纤维材料力学性能的同时,还改善了该材料在后续高温处理、溶胀与酸碱测试等过程中所体现的纤维取向性。而经交联热处理最终制得的PAA/CNC/BF复合纤维材料能在不同pH溶液中,迅速且精准地实现其颜色、尺寸、形状、质量等可逆性转换。
Lignocellulose nanocrystal (CNC),polyacrylic acid (PAA) and basic fuchsin (BF) were used to fabricate PAA/CNC/BF composite fibre material via electrospinning technology and further high-temperature processing in the presence of glutaraldehyde (GA).The raw materials were identified,and optimized the recipe from the comparisons results of composite samples in tensile test,degree of crosslinking test,color variance test,and swelling effect test.Then the multiple compound mechanism and stimulate (pH)-response (color and shape changes) mechanism of the material were studied.The results showed that CNC not only enhanced mechanical property of the product greatly,but also improved its orientating property during the high-temperature processing,swelling test,acid & aikali test,etc.Notably,the PAA/CNC/BF material after high-temperature processing and crosslinking treatments could switch its color,size,shape and weight in different pH solutions rapidly and precisely.
[1] Joachim C.Drawing a single nanofibre over hundreds of microns[J].Europhysics Letters,1998,42(2):215-220.
[2] Martin C R.Membrane-based synthesis of nanomaterials[J].Chemistry of Materials,1996,8(8):1739-1746.
[3] Wang X,Yu J,Sun G,et al.Electrospun nanofibrous materials:a versatile medium for effective oil/water separation[J].Materials Today,2016,19:403-414.
[4] Nakata K,Fujii K,Ohkoshi Y,et al.Poly (ethylene terephthalate) nanofibers made by sea-island-type conjugated melt spinning and laser-heated flow drawing[J].Macromolecular Rapid Communications,2007,28(6):792-795.
[5] Fedorova N,Pourdeyhimip B.High strength nylon micro- and nanofiber based nonwovens via spunbonding[J].Journal of Applied Polymer Science,2007,104(5):3434-3442.
[6] Song J W,Chen C J,Zhu S Z,et al.Processing bulk natural wood into a high-performance structural material[J].Nature,2018,554:224-228.
[7] Sinha A,Martin E M,Lim K T,et al.Cellulose nanocrystals as advanced “green” materials for biological and biomedical engineering[J].Journal of Biosystems Engineering,2015,40(4):373-393.
[8] 张俐娜,纤维素科学与材料[M].北京:化学工业出版社,2015,36-39.
[9] Klemm D,Kramer F,Moritz S,et al.Nanocelluloses:a new family of nature-based materials[J].Angewandte Chemie International Edition,2011,50:5438-5466.
[10] Padmakumar S,Joseph J,Neppalli M H,et al.Electrospun polymeric core-sheath yarns as drug eluting surgical sutures[J].ACS Applied Materials & Interfaces,2016,8:6925-6934.
[11] Cheng B W,Li Z J,Li Q X,et al.Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation[J].Journal of Membrane Science,2017,534:1-8.
[12] Wei J,Ju X J,Zou X Y,et al.Multi-stimuli-responsive microcapsules for adjustable controlled-release[J].Advanced Functional Materials,2014,24(22):3312-3323.
[13] 李子程,李攻科,胡玉玲.刺激响应聚合物在生物医药中的应用[J].化学进展,2017,29(12):1480-1487.
[14] 陈文帅,于海鹏,李勍,等.纳米纤维素机械法制备与应用基础[M].北京:科学出版社,2014,14-34.
[15] 卢芸,李坚,孙庆丰,等.生物质纳米材料与气凝胶[M].北京:科学出版社,2015,260-266.
[16] Wang H X,Xue Y H,Ding J,et al.Durable,selfhealing superhydrophobic and superoleophobic surfaces from fluorinated decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane[J].Angewandte Chemie International Edition,2011,123:11635-11638.
[17] Wang S L,Liu C Y,Liu G C,et al.Fabrication of superhydrophobic wood surface by a sol-gel process[J].Applied Surface Science,2011,258:806-810.
[18] Zhang M,Wang C Y,Wang S L,et al.Fabrication of superhydrophobic cotton textiles for water-oil separation based on drop-coating route[J].Carbohydrate Polymers,2013,97(1):59-64.
[19] Lu Y,Liu H,Gao R,et al.Coherent interface assembled Ag2O anchored nanofibrillated cellulose porous aerogels for radioactive iodine capture[J].ACS Applied Materials & Interfaces,2016,DOI:10.1021/acsami.6b10749.