对两种国产T800级碳纤维即湿法纺丝工艺HF40A和干喷湿纺工艺HF40S进行了测试比较分析,HF40A碳纤维拉伸强度5637MPa,拉伸模量295GPa,断裂伸长率1.9%,HF40S碳纤维拉伸强度6060MPa,拉伸模量292GPa,断裂伸长率2.0%,两种碳纤维的力学性能均达到了国外同类产品水平。湿法纺丝工艺HF40A碳纤维表面带有大量沟槽,与水和乙二醇的接触角分别为70.2°和60.9°,而干喷湿纺工艺HF40S碳纤维表面光滑,与水和乙二醇的接触角分别为74.4°和66.5°,HF40A碳纤维表面自由能为37.5mJ/m2,而HF40S碳纤维表面自由能为34.3mJ/m2。HF40A、HF40S碳纤维与EM301树脂接触角分别为31.8°和34.5°,HF40A碳纤维与该树脂缠绕工艺制备的复合材料层间剪切强度为103MPa,同样条件下HF40S碳纤维的层间剪切强度仅91MPa。
In order to study the properties of domestic T800 carbon fiber (CF),two kinds of T800 grade CF,HF40A CF prepared by wet spinning process and HF40S CF prepared by dry-jet wet spinning process were tested and analyzed.The tensile strength of HF40A was 5637MPa,the tensile modulus was 295GPa and the elongationwas 1.9%,and the tensile strength of HF40S was 6060MPa,the tensile modulus was 292GPa and the elongation was 2.0%.The mechanical properties of two CF were reached the level of similar foreign products.A large number of grooves were distributed on the surface of the HF40A,which caused by the wet spinning process,the contact angles with water and glycol were 70.2 ° and 60.9 ° respectively.But the surface of HF40S was smooth,which was different from HF40A,the contact angle with water and glycol were 74.4° and 66.5°.The calculated surface free energy of HF40A and HF40S were 37.5MJ/m2 and 34.3MJ/m2 respectively.The contact angle of HF40A and HF40S with EM301 epoxy resin system were 31.8° and 34.5° respectively.The inter laminar shear strength of HF40A and HF40S made by winding process was 103MPa and 91MPa respectively.
[1] 贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010,16,285.
[2] 王迎芬,彭公秋,李国丽,等.T800H碳纤维表面特性及T800H/BA9918复合材料湿热性能研究[J].材料科学与工艺,2015,23(4):115-120.
[3] Wang L L,Li P,Li L C,et al.Effect of surface properties of T800 carbon fibers on epoxy/fiber interface adhesion[J].Polymers& Polymer Composites,2013,21(9):607-612.
[4] 井敏,谭婷婷,王成国,等.东丽T800H与T800S碳纤维的微观结构比较[J].材料科学与工艺,2015,23(2):45-52.
[5] Zaffar M K,Ali H M,Ben M,et al.The drilling-induced failure mechanisms in T800/924C toughened carbon-epoxy composite materials[J].Journal of Reinforced Plastics and Composites,2014,33:202-211.
[6] 张世杰,王汝敏,廖英强,等.T800HB碳纤维复合材料壳体定量化等强度补强技术[J].宇航材料工艺,2018(3):51-55.
[7] 欧秋仁,嵇培军,肖军,等.T800碳纤维/9518氰酸酯复合材料的性能[J].复合材料学报,2018,35(7):1775-1782.
[8] 兰总金,祖磊,惠鹏,等.基于NOL环的高性能纤维与环氧树脂的匹配性研究[J].玻璃钢/复合材料,2018(3):45-51.
[9] 张世杰,王汝敏,刘宁,等.两种纺丝工艺T800级炭纤维复合材料容器性能对比[J].固体火箭技术,2019,42(2):239-244.
[10] 牛越,矫维成,郝立峰,等.T800碳纤维/5428双马树脂复合材料界面性能研究[J].玻璃钢/复合材料,2012(Z):84-88.
[11] 顾红星,王浩静,张淑斌,等.HKT800碳纤维微观结构与性能[J].材料科学与工艺,2016,24(3):45-49.
[12] 顾红星,王浩静,范立东,等.HKT800碳纤维/AG80环氧树脂复合材料制备及性能[J].功能材料,2015,46(15):15007-15010.
[13] 钟俊俊,钱鑫,张永刚.等.不同直径的T800级高强中模碳纤维的结构对比[J].合成纤维工业,2018,41(5):5-8.