新材料与新技术

磷化镍/氧化石墨烯负极材料的制备及其锂离子电池性能研究

展开
  • 1.辽宁科技大学化学工程学院,鞍山114044;
    2.辽宁科技大学材料与冶金学院,鞍山114044
孙鹏(1981-),女,博士研究生,讲师,主要从事储能材料的研究,E-mail:sunpeng333550233@163.com。

收稿日期: 2020-02-04

  修回日期: 2021-02-16

  网络出版日期: 2021-06-10

Preparation and electrochemical property of Ni2P/GO composite as anode material for Li-ion battery

Expand
  • 1. School of Chemical Engineering,Liaoning University of Science and Technology, Anshan 114044;
    2. School of Materials and Metallurgy,Liaoning University of Science and Technology,Anshan 114044

Received date: 2020-02-04

  Revised date: 2021-02-16

  Online published: 2021-06-10

摘要

以石墨烯和植酸为原料,通过水热及煅烧的方法制备了磷化镍/氧化石墨烯(Ni2P/GO)复合材料。采用X射线衍射、扫描电镜、拉曼光谱及BET等手段表征了其结构与形貌,并测试了锂电池性能。结果表明:Ni2P/GO复合材料的首次充电比容量为558mAh/g,经历了200次循环后依然保持了485.8mAh/g的可逆容量,具有87%的容量保持率,复合材料表现出优异的循环稳定性及倍率性能。

本文引用格式

孙鹏, 马贤坤, 赵佳华, 吴永钚, 杨佳伟, 王志晗, 王永飞, 张志强 . 磷化镍/氧化石墨烯负极材料的制备及其锂离子电池性能研究[J]. 化工新型材料, 2021 , 49(5) : 97 -101 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.05.022

Abstract

Nickel phosphide(Ni2P)/graphene(GO) composites were prepared from graphene and phytic acid by hydrothermal and calcination methods.The structure and morphology were characterized by XRD,SEM,Raman and BET,and tested the performance of Li-ion battery.The first charge specific capacity of Ni2P/GO composite was 558mAh/g.After 200 cycles,it still maintaind a reversible capacity of 485.8mAh/g with a capacity retention rate of 87%.The composite shown excellent cycle stability and rate performance.

参考文献

[1] Xu J,Zhang J J,Zhang W J,et al.Interlayer nanoarchitectonics of two dimensional transition-metal dichalcogenides nanosheets for energy storage and conversion applications[J].Advanced Energy Materials,2017,7(23):1700571.
[2] Lou P L,Cui Z H,Jia Z Q,et al.Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra long-life anodes for reversible lithium storage[J].ACS Nano,2017,11(4):3705-3715.
[3] Larcher D,Tarascon J M.Towards greener and more sustainable batteries for electrical energy storage[J].Nature Chemistry,2014,7(1):19-29.
[4] Yang J,Zhang Y,Sun C C,et al.Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries[J].Nano Research,2016,9(3):612-621.
[5] Zhao Y,Wang L P,Sougrati M T,et al.A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes[J].Advanced Energy Materials,2016,7(9):1601424.
[6] Wang Y J,Wu H,Liu Z F,et al.Tailoring sandwich-like CNT@MnO@N-doped carbon hetero-nanotubes as advanced anodes for boosting lithium storage[J].Electrochimica Acta,2019,1(304):158-167.
[7] Li W J,Chou S L,Dou S X,et al.A new,cheap,and productive FeP anode material for sodium-ion batteries[J].Chemical Communications,2015,51(17):3682-3685.
[8] Zhou W,Zheng J L,Yue Y H,et al.Highly stable rGO-wrapped Ni3S2 nanobowls:structure fabrication and superior long-life electrochemical performance in LIBs[J].Nano Energy,2014,1(11):428-435.
[9] Huang G,Guo X,Cao X,et al.Rational design and electron transfer kinetics of MoS2/CdS nanodots-on-nanorods for efficient visible-light-driven hydrogen generation[J].Nano Energy,2016,10(28):338-339.
[10] Pu Z,Liu Q,Jiang P,et al.CoP nanosheet arrays supported on a Ti plate:an efficient cathode for electrochemical hydrogen evolution[J].Chemistry of Materials,2014,26(15):4326-4329.
[11] He P,Yu X Y,Lou X W,et al.Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution[J].Angewandte Chemie International Edition,2017,56(14):3897-3900.
[12] Liu S,He X,Zhu J,et al.Cu3P/RGO nanocomposite as a new anode for lithium-ion batteries[J].Scientific Reports,2016,10(6):35189-35193.
[13] Chen M,Zhou W,Qi M,et al.Exploring highly porous Co2P nanowire arrays for electrochemical energy storage[J].Journal of Power Sources,2017,342(28):964-969.
[14] Wang J,Wang B,Liu X,et al.Construction of carbon-coated nickel phosphide nanoparticle assembled submicrospheres with enhanced electrochemical properties for lithium/sodium-ion batteries[J].Journal of Colloid and Interface Science,2019(538):187-198.
[15] Jiang Y,Peng M,Lan J,et al.Self-reconstructed (Oxy) hydroxide@nanoporous metal phosphides electrode for high-performance rechargeable zinc batteries[J].Journal of Materials Chemistry A,2019,7(37):21069-21072.
[16] Jin Y,Zhao C,Jiang Q,et al.One-step synthesis of self-supported NixP nanowires/Ni hybrid foam as battery-like electrode for high-performance supercapacitors[J].Materials Chemistry and Physics,2018,214(8):89-94.
[17] Liu S,Sankar K V,Kundu A,et al.Honeycomb-like interconnected network of nickel phosphide hetero-nanoparticles with superior electrochemical performance for supercapacitors[J].ACS Applied Materials & Interfaces,2017,9(26):21829-21838.
[18] Wang C D,Ding T,Sun Y,et al.Ni12P5 nanoparticles decorated on carbon nanotubes with enhanced electrocatalytic and lithium storage properties[J].Nanoscale,2015,7(45):19241-19249.
[19] Lu Y,Wang S X,Mao J,et al.Monodisperse sandwich-like coupled quasi-graphene sheets encapsulating Ni2P nanoparticles for enhanced lithium-ion batteries[J].Chemistry-A European Journal,2015,21(25):9229-9235.
[20] Xiang J Y,Wang X L,Zhong J,et al.Enhanced rate capability of multi-layered ordered porous nickel phosphide film as anode for lithium ion batteries[J].Journal of Power Sources,2011,196(1):379-385.
[21] Du Z,Ai W,Yang J,et al.In situ fabrication of Ni2P nanoparticles embedded in nitrogen and phosphorus codoped carbon nanofibers as a superior anode for Li-ion batteries[J].ACS Sustainable Chemistry & Engineering,2018,6(11):14795-14801.
[22] Zheng J L,Huang X M,Pan X,et al.Yolk-shelled Ni2P@carbon nanocomposite as high-performance anode material for lithium and sodium ion batteries[J].Applied Surface Science,2019,4(473):699-705.
[23] Li Q,Ma J,Wang H,et al.Interconnected Ni2P nanorods grown on nickel foam for binder free lithium ion batteries[J].Electrochimica Acta,2016,9(213):201-206.
[24] Bai Y,Zhang H,Li X,et al.Novel peapod-like Ni2P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage[J].Nanoscale,2015,7(4):1446-1453.
[25] Jiang J,Wang C D,Liang J W,et al.Synthesis of nanorod-FeP@C composites with hysteretic lithiation in lithium-ion batteries[J].Dalton Trans,2015,44(22):10297-10303.
[26] Li G H,Yang H,Li F C,et al.Facile formation of a nanostructured NiP2@C material for advanced lithium-ion battery anode using adsorption property of metal-organic framework[J].Journal of Materials Chemistry A,2016,4(24):9593-9599.
[27] Jiang H,Chen B,Pan J,et al.Strongly coupled FeP@reduced graphene oxide nanocomposites with superior performance for lithium-ion batteries[J].Journal of Alloys and Compounds,2017,12(728):328-336.
[28] Zhou X,Guo Y G.Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries[J].Chem Electro Chem,2014,1(1):83-86.
[29] Wu C,Kopold P,Aken P A V,et al.High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D Yolk-shell-like nanostructural design[J].Advanced Materials,2016,29(3):1604015-1604018.
[30] Popczun E J,Mckone J R,Read C G,et al.Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J].Journal of the American Chemical Society,2013,135(25):9267-9270.
[31] 杨晓武,李晓叶.碳硅复合电极材料在锂离子电池中的应用研究[J].电源技术,2017,12(41):1688-1690.
[32] 张华森,李喜宝,冯志军,等.加热温度对尿素水溶液制备类石墨相氮化碳的影响及其机理[J].硅酸盐学报,2018,46(2):281-287.
[33] Xu X,Tan H,Xi K,et al.Bamboo-like amorphous carbon nanotubes clad in ultrathin nickel oxide nanosheets for lithium-ion battery electrodes with long cycle life[J].Carbon,2015,84(1):491-499.
[34] Gao J,Wang Y,Zhou S,et al.A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance[J].ChemCatChem,2017,9(9):1708-1715.
[35] 曾炜炜,吴赟炎,李毅,等.二维石墨相氮化碳纳米片的制备方法研究进展[J].化工新型材料,2018,46(6):9-11.
文章导航

/