以甘蔗渣为基质采用改进Hummers法制备氧化石墨烯(GO),利用响应曲面法优化实验设计对甘蔗渣为基质的GO制备条件进行优化。选取碳粉用量、高锰酸钾用量、浓硫酸用量和超声时间作为4个变量因素,以制备的GO的红外特征吸收峰强度为响应值,利用Design-Expert软件进行数据分析,确定甘蔗渣基GO的最佳条件为:碳粉用量3.39g、高锰酸钾用量4.21g、浓硫酸用量20.68mL、超声时间7.75h。扫描电子显微镜和傅里叶变换红外光谱仪分析表明,在最佳条件下制备的GO具有明显的片层结构,特征峰出现在1500cm-1、2300cm-1、2400cm-1和3500cm-1处。
Graphene oxide(GO) was prepared by using bagasse as base material,and through improved Hummers method.The preparation conditions of GO with bagasse as substrate were optimized by response surface methodology (RSM).The dosage of toner,dosage of potassium permanganate,dosage of concentrated sulfuric acid and ultrasonic time were selected as four variable factors.And the infrared characteristic absorption peak intensity of the prepared GO was taken as the response value.Then,data analysis was carried out using Design-Expert software.The optimum conditions for preparing GO from bagasse were as follows:carbon powder 3.39g,potassium permanganate 4.21g,concentrated sulfuric acid 20.68mL and ultrasonic time 7.75h.The results of scanning electron microscopy and infrared spectroscopy shown that GO prepared under these conditions had obvious lamellar structure,with characteristic peaks at 1500cm-1,2300cm-1,2400cm-1 and 3500cm-1,which were comparable to GO prepared by traditional materials.
[1] 祝智胜.温和碱法和离子液体耦合预处理甘蔗渣研究及乙醇发酵性能的评价[D].广州:华南理工大学,2012.
[2] 覃嵩蘅.基于灰分的广西蔗渣燃烧结渣特性研究[D].南宁:广西大学,2019.
[3] András B,Juliana A,Ágnes E F,et al.Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse:composition,structure,properties[J].Polymer Testing,2020,17:106549-106554.
[4] Lamounier K F R,Rodrigues P O,Pasquini D,et al.Ethanol production and other bioproducts by galactomyces geotrichum from sugarcane bagasse hydrolysate[J].Current Microbiology,2020,77(5):738-745.
[5] Tran Q T,Doan B T,Trinh N M A,et al.Synthesis of furfural from sugarcane bagasse by hydrolysis method using magnetic sulfonated graphene oxide catalyst[J].Vietnam Journal of Chemistry,2020,58(2):245-250.
[6] Aline A A C,Andre F,Adriane M F M,et al.Enzyme-aided xylan extraction from alkaline-sulfite pretreated sugarcane bagasse and its incorporation onto eucalyptus kraft pulps[J].Carbohydrate Research,2020,492:108003-108008.
[7] Marcano D C,Kosynkin D V,Berlin J M,et al.Improved synthesis of graphene oxide[J].ACS Nano,2010,4(8):4806-4814.
[8] Pinto A M,Gonçalves I C,Magalhães F D.Graphene-based materials biocompatibility:a review[J].Colloids & Surfaces B Biointerfaces,2013,111(6):188-202.
[9] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[10] Duy X L,Ksenia V B,Wala A A,et al.Gram-scale bottom-up flash graphene synthesis[J].Nature,2020,577:647-651.
[11] Gao Chong,Liu Shumei,Huo Wenjun.Optimization of forging process for aluminum alloy connecting rods based on response surface method[J].Hot Working Technology,2020,11(49):9-14.
[12] 张家豪,师超,邵亚薇,等.溶胶-凝胶二氧化硅微球粒径的响应曲面法优化研究[J].硅酸盐通报,2017,36(5):1470-1479.
[13] Zhang Jiahao,Shi Chao,Shao Yawei,et al.Optimization of response surface method for particle size of sol-gel silica microspheres[J].Chinese Ceramics Bulletin,2017,36(5):1470-1479.
[14] Jaswir I,Noviendri D,Taher M,et al.Optimization and formulation of fucoxanthin-loaded microsphere (F-LM) using response surface methodology (RSM) and analysis of its fucoxanthin release profile[J].Molecules,2019,24(5):947.
[15] Balandin A A,Ghosh S,Bao W Z,et al.Superior thermal conductivity of single-layer graphene[J].Nano letters,2008,3(3):902-907.
[16] Marcano D C,Kosynkin D V,Berlin J M,et al.Improved synthesis of graphene oxide[J].ACS Nano,2010,4(8):4806-4814.
[17] 王露.改进Hummers法制备氧化石墨烯及其表征[J].包装学报,2015,7(2):28-31;37.