Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (7): 22-25    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
锂离子电池负极材料的制备及应用进展
严旭明, 冯光炷, 黄雪*
仲恺农业工程学院化学化工学院,广州510225
Research progress of preparation and application of cathode material for lithium ion battery
Yan Xuming, Feng Guangzhu, Huang Xue
College of Chemistry and Chemical Engineering,Zhongkai University of Agriculture and Engineering,Guangzhou 510225
下载:  PDF (1167KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池作为最具开发应用前景的新型储能材料,不仅具有安全、高效、对环境无污染的优点,而且具备相对质量轻、工作电压高、能量密度大、循环寿命长等一系列优势,已成为新型能源领域的研究热点。综述了锂离子电池负极材料中碳基负极材料、硅基负极材料、锡基负极材料和金属锂负极材料的合成、性质,以及在材料的结构设计、制备工艺等方面的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
严旭明
冯光炷
黄雪
关键词:  锂离子电池  负极材料  储能材料  比容量  循环稳定性    
Abstract: As the new energy storage material with the best developing and applying prospect,lithium-ion battery not only has the advantages of safety,high efficiency and environmental friendliness,but also has the advantages of light weight,high working voltage,large energy density and long cycle life.Lithium-ion battery has become the focus in the research field of the new energy.The research progress in carbon-based cathode materials for lithium-ion batteries was reviewed.The synthesis and properties of carbon-based materials,silicon-based materials,tin-based materials and lithium metal were summarized.The recent research in the structural design and synthesis was put forward.
Key words:  lithium ion battery    cathode material    energy storage material    specific capacity    cyclic stability
收稿日期:  2018-03-07                出版日期:  2019-07-20      发布日期:  2019-08-05      期的出版日期:  2019-07-20
基金资助: 国家自然科学基金(A1132706);广东省普通高校创新团队项目(2016KCXTD003);广东省普通高校特色创新项目(2016KTSCX059)
通讯作者:  黄雪(1982-),女,博士,副教授,主要从事生物质和功能高分子材料研究   
作者简介:  严旭明(1994-),男,硕士研究生,主要从事生物质功能材料研究
引用本文:    
严旭明, 冯光炷, 黄雪. 锂离子电池负极材料的制备及应用进展[J]. 化工新型材料, 2019, 47(7): 22-25.
Yan Xuming, Feng Guangzhu, Huang Xue. Research progress of preparation and application of cathode material for lithium ion battery. New Chemical Materials, 2019, 47(7): 22-25.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2019/V47/I7/22
[1] Xi W,Weng Q,Yang Y,et al.Cheminform abstract:hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms[J].Chemical Society Reviews,2016,45(15):4042-4073.
[2] Mccreery R L.Advanced carbon electrode materials for mole-cular electrochemistry[J].Chemical Reviews,2008,39(41):2646-2687.
[3] Billaud J,Bouville F,Magrini T,et al.Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries[J].Nature Energy,2016,1(8):16097-16102.
[4] Welna D T,Qu L,Taylor B E,et al.Vertically aligned carbon nanotube electrodes for lithium-ion batteries[J].Journal of Power Sources,2011,196(3):1455-1460.
[5] Cui X,Tang F,Li C,et al.Pretreatment of graphite anodes with lithium sulfate to improve the cycle performance of lithium-ion batteries[J].Energy Technology,2017,5(4):549-556.
[6] Dong J,Xue Y,Zhang C,et al.Improved Li+ storage through homogeneous N-doping within highly branched tubular graphitic foam[J].Advanced Materials,2017,29(6):1-8.
[7] Zhang H,Wang Y,Zhao W,et al.MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes[J].ACS Appl Mater Interfaces,2017,9(43):37813-37822.
[8] Zuo X,Zhu J,Müller-Buschbaum P,et al.Silicon based lithium-ion battery anodes:a chronicle perspective review[J].Nano Energy,2017,31:113-143.
[9] Higgins T M,Park S H,King P J,et al.A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes[J].ACS Nano,2016,10(3):3702-3713.
[10] Chan C K,Peng H,Liu G,et al.High-performance lithium battery anodes using silicon nanowires[J].Nature Nanotech-nology,2008,3(1):187-191.
[11] Liu N,Wu H,Mcdowell M T,et al.A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J].Nano Letters,2012,12(6):3315-3321.
[12] Bogart T D,Oka D,Lu X,et al.Lithium ion battery peformance of silicon nanowires with carbon skin[J].ACS Nano,2014,8(1):915-922.
[13] Gan L,Guo H,Wang Z,et al.A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries[J].Electrochimica Acta,2013,104(8):117-123.
[14] Chen Y,Hu Y,Shen Z,et al.Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes[J].Electrochimica Acta,2016,210:53-60.
[15] Yoo J K,Kim J,Lee H,et al.Porous silicon nanowires for lithium rechargeable batteries[J].Nanotechnology,2013,24(42):424008-424014.
[16] Li X,Gu M,Hu S,et al.Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes[J].Nature Communications,2014,5(5):1-7.
[17] Ge M,Lu Y,Ercius P,et al.Large-scale fabrication,3D tomography,and lithium-ion battery application of porous silicon[J].Nano Letters,2014,14(1):261-268.
[18] Choi S,Kwon T W,Coskun A,et al.Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J].Science,2017,357(6348):279-283.
[19] Liu D,Zhao Y,Tan R,et al.Novel conductive binder for high-performance silicon anodes in lithium ion batteries[J].Nano Energy,2017,36:206-212.
[20] Deng D,Min G K,Lee J Y,et al.Green energy storage materials:nanostructured TiO2 and Sn-based anodes for lithium-ion batteries[J].Energy & Environmental Science,2009,2(8):818-837.
[21] Huang X,Cui S,Chang J,et al.A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life[J].Angewandte Chemie,2015,54(5):1490-1493.
[22] Fan L,Li X,Cui Y,et al.Tin oxide/graphene aerogel nanocomposites building superior rate capability for lithium ion batteries[J].Electrochimica Acta,2015,176(11):610-619.
[23] An W,Fu J,Mei S,et al.Dual carbon layers hybridized mesoporous tin hollow spheres for fast-rechargeable and high-stable lithium-ion battery anode[J].Journal of Materials Chemistry A,2017,5(27):14422-14429.
[24] Luo Y,Zhang Y,Huang J.A hierarchically structured anatase-titania/indium-tin-oxide nanocomposite as an anodic material for lithium-ion batteries[J].Crystengcomm,2017,19(46):6972-6978.
[25] Wang L P,Leconte Y,Feng Z,et al.Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis:demonstration of exceptional lithium storage properties[J].Advanced Materials,2017,29(6):1603286-1603297.
[26] Lin D,Liu Y,Cui Y.Reviving the lithium metal anode for high-energy batteries[J].Nature Nanotechnology,2017,12(3):194-206.
[27] Zhang Y,Qian J,Xu W,et al.Dendrite-free lithium deposition with self-aligned nanorod structure[J].Nano Letters,2014,14(12):6889-6896.
[28] Zhang Y J,Wang W,Tang H,et al.An exsitu nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries[J].Journal of Power Sources,2015,277:304-311.
[29] Kozen A C,Lin C F,Pearse A J,et al.Next-generation lithium metal anode engineering via atomic layer deposition[J].ACS Nano,2015,9(6):5884-5892.
[30] Zhu B,Jin Y,Hu X,et al.Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes[J].Advanced Materials,2017,29(2):1603755-1603760.
[1] 李庆余, 黄德权, 赖飞燕, 熊庆, 王红强, 刘国壮. La0.65Sr0.35MnO3@LiMn2O4正极材料在聚合物锂电池中的应用[J]. 化工新型材料, 2019, 47(8): 224-227.
[2] 王华丹, 贡纬华, 苏毅, 李国斌. 高压正极材料磷酸镍锂研究进展[J]. 化工新型材料, 2019, 47(7): 13-16.
[3] 李新芳, 赵素芬, 吴淑英, 付文亭. 纳米复合材料的制备及相变特性研究[J]. 化工新型材料, 2019, 47(7): 60-63.
[4] 段应娇, 王倩. 非对称型超级电容器电极材料研究进展[J]. 化工新型材料, 2019, 47(6): 7-12.
[5] 戴剑锋, 朱晓军, 刘骥飞, 李维学, 王青, 贾钰泽. 硅基锂离子电池负极材料的容量衰减及改进研究[J]. 化工新型材料, 2019, 47(5): 222-226.
[6] 浦旭清,王开松,王佳磊,谢宇,陈介民,沈超,许宁,岳鹿. 硅/石墨烯/碳复合材料的制备及其储锂性能研究[J]. 化工新型材料, 2019, 47(4): 76-80.
[7] 王丽媛, 李建刚, 姚琼, 何向明, 刘才. 高容量富锂三元材料xLi2MnO3·(1-x)LiNi0.6Co0.2Mn0.2O2的制备与性能研究[J]. 化工新型材料, 2019, 47(3): 67-70.
[8] 吕晓娟, 杨东昱. NASICON型无机固态锂离子电解质的研究进展[J]. 化工新型材料, 2019, 47(1): 47-52.
[9] 张帆, 方飞. 基于专利分析的我国锂离子电池聚合物电解质发展态势研究及对浙江省的启示[J]. 化工新型材料, 2019, 47(1): 38-41.
[10] 时杰, 刘庆, 臧浩宇, 吕宪俊. 石墨基锂离子电池负极材料研究进展[J]. 化工新型材料, 2019, 47(1): 42-46.
[11] 张霞, 李艳, 李丹青, 苗永霞, 程少鹏, 张玉军, 许元栋. 银耳状钼酸铋纳米花的合成及其锂离子电池性能研究[J]. 化工新型材料, 2019, 47(1): 132-135.
[12] 戴仲葭. 锂离子电池正极材料LiMn0.8-xFe0.15+xMg0.05PO4的制备、表征及电化学过程研究[J]. 化工新型材料, 2018, 46(9): 198-201.
[13] 武宏大, 杨占旭, 邵军桥. 溶剂热法制备球形MoS2材料及其电化学性能研究[J]. 化工新型材料, 2018, 46(9): 180-182.
[14] 卢璐, 李军, 蓝利芳, 许帅军, 黄思. 过渡金属氧化物负极材料的研究进展[J]. 化工新型材料, 2018, 46(9): 65-68.
[15] 刘家伟, 于洪珺, 张玉环, 陈均青, 卑凤利. LiFePO4/CuO/Ag/RGO四元复合材料的制备与电化学性能研究[J]. 化工新型材料, 2018, 46(9): 117-120.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn