Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2019, Vol. 47 Issue (12): 1-5    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
超级电容器电极材料研究进展
张紫瑞1,2, 赵云鹏2, 张颖2, 黄雨欣2, 张子怡2, 杜卫民1,2*
1.郑州大学化学与分子工程学院,郑州450001;
2.安阳师范学院化学化工学院,安阳455000
Research progress of electrode material of supercapacitor
Zhang Zirui1,2, Zhao Yunpeng2, Zhang Ying2, Huang Yuxin2, Zhang Ziyi2, Du Weimin1,2
1.College of Chemistry and Molecular Engineering,Zhengzhou University,Zhengzhou 450001;
2.College of Chemistry and Chemical Engineering,Anyang Normal University,Anyang 455000
下载:  PDF (1217KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种介于电池和传统电容器之间的新型储能装置,超级电容器在性能方面很大程度上缩小了两者之间的差距。总结了适用于超级电容器的各种电极材料,按照储能机理的差异对其进行分类,总结了不同类型超级电容器的最新研究成果,并举例说明了不同类型超级电容器的优缺点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张紫瑞
赵云鹏
张颖
黄雨欣
张子怡
杜卫民
关键词:  超级电容器  电极材料  储能机理  研究进展    
Abstract: As a new energy storage system device between a battery and a conventional capacitor,supercapacitors greatly reduce the gap in terms of performance.The various electrode materials applicable to supercapacitors were summarized,classified the supercapacitors according to the differences in energy storage mechanisms,The latest research results of various types of supercapacitors were intruduced.It also illustrated the advantages and disadvantages of various types of supercapacitors.
Key words:  supercapacitor    electrode material    energy-storage mechanism    research progress
收稿日期:  2018-06-21                出版日期:  2019-12-20      发布日期:  2020-01-03      期的出版日期:  2019-12-20
基金资助: 国家留学基金委-河南省地方合作项目(201708410285);安阳市新能源汽车发展专项项目(2017-480-15)
通讯作者:  杜卫民(1975-),男,博士,教授,主要从事功能纳米材料的合成及应用研究。   
作者简介:  张紫瑞(1992-),男,硕士研究生,主要从事电化学研究。
引用本文:    
张紫瑞, 赵云鹏, 张颖, 黄雨欣, 张子怡, 杜卫民. 超级电容器电极材料研究进展[J]. 化工新型材料, 2019, 47(12): 1-5.
Zhang Zirui, Zhao Yunpeng, Zhang Ying, Huang Yuxin, Zhang Ziyi, Du Weimin. Research progress of electrode material of supercapacitor. New Chemical Materials, 2019, 47(12): 1-5.
链接本文:  
https://www.hgxx.org/CN/  或          https://www.hgxx.org/CN/Y2019/V47/I12/1
[1] Chen H,Cong T N,Yang W,et al.Progress in electrical energy storage system:a critical review[J].Progress in Natural Science,2009,19(3):291-312.
[2] Liu B,Tan D,Wang X,et al.Flexible,planar-integrated,all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect[J].Small,2013,9(11):1998-2004.
[3] Liu G,Yu Y,Hou J,et al.An ecological risk assessment of heavy metal pollution of the agricultural ecosystem near a lead-acid battery factory[J].Ecological Indicators,2014,47(161):210-218.
[4] Conway B E.Transition from supercapacitor to battery behavior in electrochemical energy storage[J].Journal of the Electrochemical Society,1991,138(6):1539-1547.
[5] Arico A S,Bruce P,Scrosati B,et al.Nanostructured materials for advanced energy conversion and storage devices[J].Nature Materials,2005,4(5):366-377.
[6] Winter M,Brodd R J.What are batteries,fuel cells,and supercapacitors?[J].Chemical Reviews,2004,104(10):4245-4270.
[7] Conway B E.Electrochemical supercapacitors[M].New York:Kluwer Academic/Plenum Press,1999,1-9.
[8] Becker H I.Low voltage electrolytic capacitor:US,US2800616A[P].1957-07-23.
[9] Kotz R,Carlen M.Principles and applications of electrochemical capacitors[J].Electrochimica Acta,2000,45(13):2483-2498.
[10] Fang B,Binder L.A modified activated carbon aerogel for high-energy storage in electric double layer capacitors[J].Journal of Power Sources,2006,163(1):616-622.
[11] Barisci J N,Wallace G G,Baughman R H.Electrochemical characterization of single-walled carbon nanotube electrodes[J].Joural of the Electrochemical Society,2000,147(12):4580-4583.
[12] Morishita T,Tsumura T,Toyoda M,et al.A review of the control of pore structure in MgO-templated nanoporous carbons[J].Carbon,2010,48(26):2690-2707.
[13] Wang D,Li F,Liu M,et al.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J].Angewandte Chemie International Edition,2008,47(2):373-376.
[14] Yuan Y,Zhang C,Wang C,et al.Amphiphilic carbonaceous material-based hierarchical porous carbon aerogels for supercapacitors[J].Journal of Solid State Electrochemistry,2014,19(2):619-627.
[15] Lv Y,Zhang F,Dou Y,et al.A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application[J].Journal of Materials Chemistry,2012,22(1):93-99.
[16] Yang I,Kim S G,Kwon S H,et al.Pore size-controlled carbon aerogels for EDLC electrodes in organic electrolytes[J].Current Applied Physics,2016,16(6):665-672.
[17] Lijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
[18] Krivchenko V A,Maksimov Y M,Podlovchenko B I,et al.Electrochemical activation of carbon nanowalls[J].Mendeleev Communications,2011,21(5):264-265.
[19] Gong K,Du F,Xia Z,et al.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J].Science,2009,323(5915):760-764.
[20] Chen A,Li Y,Yu Y,et al.Nitrogen-doped hollow carbon spheres for supercapacitors application[J].Journal of Alloys and Compounds,2016,688(54):878-884.
[21] Chen A,Li Y,Liu L,et al.Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors[J].Applied Surface Science,2017,393(6):151-158.
[22] Deng Y,Xie Y,Zou K,et al.Review on recent advances in nitrogen-doped carbons:preparations and applications in supercapacitors[J].Journal of Materials Chemistry A,2016,4(87):1144-1173.
[23] Conway B E,Birss V,Wojtowicz J.The role and utilization of pseudocapacitors for energy storage by supercapacitors[J].Journal of Power Sources,1997,66(1-2):1-14.
[24] Lu M,Lu Y,Qiu K,et al.One-pot synthesized ultrathin MnO2 nanorods as advanced electrodes for high-performance supercapacitors[J].Materials Letters,2016,166(32):255-258.
[25] Patil U M,Nam M S,Sohn J S,et al.Controlled electrochemical growth of Co(OH)2 flakes on 3D multilayered graphene foam for high performance supercapacitors[J].Journal of Materials Chemistry A,2014,2(44):19075-19083.
[26] Du H,Jiao L,Cao K,et al.Polyol-mediated synthesis of mesoporous α-Ni(OH)2 with enhanced supercapacitance[J].ACS Applied Materials & Interfaces,2013,5(14):6643-6648.
[27] Tian Y,Liu Z,Xue R,et al.An efficient supercapacitor of three-dimensional MnO2 film prepared by chemical bath method[J].Journal of Alloys and Compounds,2016,671(55):312-317.
[28] Zhang Y,Xia X,Kang J,et al.Hydrothermal synthesized porous Co(OH)2 nanoflake film for supercapacitor application[J].Chinese Science Bulletin,2012,57(32):4215-4219.
[29] Xu X,Shen J,Li N,et al.Microwave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performance[J].Journal of Alloys and Compounds,2014,616(21):58-65.
[30] Du W,Wang Z,Zhu Z,et al.Facile synthesis and superior electrochemical performances of CoNi2S4/graphene nanocomposite suitable for supercapacitor electrodes[J].Journal of Materials Chemistry A,2014,2(25):9613-9619.
[31] Xiong Wei,Gao Yongsheng,Wu Xu,et al.Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor[J].ACS Applied Materials & Interfaces,2014,6(21):19416-19423.
[32] Chen W,Xia C,Alshareef H N.One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors[J].ACS Nano,2014,8(9):9531-9541.
[33] Du W,Zhu Z,Wang Y,et al.One-step synthesis of CoNi2S4 nanoparticles for supercapacitor electrodes[J].RSC Advances,2014,4(14):6998.
[34] Leela M R A,Gowda S R,Shaijumon M M,et al.Hybrid nanostructures for energy storage applications[J].Advanced Materials,2012,24(37):5045-5064.
[35] Zhang L L,Zhao X S.Carbon-based materials as supercapacitor electrodes[J].Chemical Society Reviews,2009,38(9):2520-2531.
[36] MacDiarmid A G.“Synthetic metals”:a novel role for organic polymers (Nobel lecture)[J].Angewandte Chemie,International Edition,2001,40(14):2581-2590.
[37] 方偎,陈晓红,宋怀河,等.竹炭/聚苯胺复合材料作为超级电容器电极材料的研究[J].炭素技术,2015,34(3):15-17.
[38] Yu M,Ma Y,Liu J,et al.Polyaniline nanocone arrays synthe-sized on three dimensional graphene network by electrodeposition for supercapacitor electrodes[J].Carbon,2015,87(67):98-105.
[39] Zhang Z,Chi K,Xiao F,et al.Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/poly-pyrrole hybrid architectures[J].Journal of Materials Chemistry,2015,3(24):12828-12835.
[40] Sankar K V,Seo Y,Lee S C,et al.Redox additive-improved electrochemically and structurally robust binder-free nickel pyrophosphate nanorods as superior cathode for hybrid supercapacitors[J].ACS Applied Materials & Interfaces,2018,10(9):8045-8056.
[1] 张强, 张卓, 杨威, 张均, 姜志国. 结构型阻燃聚氨酯硬质泡沫研究进展[J]. 化工新型材料, 2019, 47(9): 211-214.
[2] 陈思, 毕玉红, 罗居杰, 张新宇. 石墨烯/氧化镍复合材料的微波法制备及电化学性能研究[J]. 化工新型材料, 2019, 47(9): 224-228.
[3] 张庆范, 安伟, 赵建平, 赵宇鹏, 刘保占. 溢油吸附材料研究进展[J]. 化工新型材料, 2019, 47(8): 28-33.
[4] 杨振生, 张阳阳, 李春利, 王志英. 疏水聚氨酯海绵吸油材料研究进展[J]. 化工新型材料, 2019, 47(8): 34-38.
[5] 杨波, 伍俊霖, 刘文宝, 姜宝正. 商业化石墨烯材料在超级电容器中的应用研究[J]. 化工新型材料, 2019, 47(8): 220-223.
[6] 崔英杰, 马玉芹, 赵学森, 耿爱芳, 杨秀云. 热激活延迟荧光器件性能影响因素研究进展[J]. 化工新型材料, 2019, 47(7): 9-12.
[7] 吕旭, 关明. 爆炸物三过氧化三丙酮检测技术的研究进展[J]. 化工新型材料, 2019, 47(7): 26-30.
[8] 张焕芝, 崔韦唯, 夏永鹏, 徐芬, 孙立贤. 复合相变材料的制备及热性能研究进展[J]. 化工新型材料, 2019, 47(6): 35-38.
[9] 段应娇, 王倩. 非对称型超级电容器电极材料研究进展[J]. 化工新型材料, 2019, 47(6): 7-12.
[10] 刘顺强. 有序介孔炭材料表面电活性氧基团的构造及其超级电容器性能[J]. 化工新型材料, 2019, 47(6): 84-87.
[11] 付兴平, 金少强, 陈培珍, 杨自涛. 含氧纳米多孔碳球的制备及其在超级电容器中的应用[J]. 化工新型材料, 2019, 47(5): 46-50.
[12] 叶心亮, 邵丹, 李向峰. 共轭聚合物传感器研究进展[J]. 化工新型材料, 2019, 47(5): 55-58.
[13] 张希,李廷鱼,李朋伟,胡杰,李刚. 基于TEABF4/PAN-b-PEG-b-PAN柔性超级电容器的性能研究[J]. 化工新型材料, 2019, 47(4): 89-92.
[14] 王凯,高超,邢欢,李松恩,雷世文,宋燕. 超纯煤沥青基活性炭的制备及其电化学性能的研究[J]. 化工新型材料, 2019, 47(4): 140-144.
[15] 李刚,吴琳,于奕峰,葛雪松,张萌,姜义军,陈爱兵. 新型环保阻燃抑烟剂羟基锡酸锌的研究进展[J]. 化工新型材料, 2019, 47(4): 226-229.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备09035943号-38
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn