Please wait a minute...
 首页  期刊简介 期刊订阅 广告合作 联系我们
 
最新录用  |  当期目录  |  过刊浏览  |  热点文章  |  阅读排行
化工新型材料  2018, Vol. 46 Issue (3): 27-33    
  综述与专论 本期目录 | 过刊浏览 | 高级检索 |
TiO2光催化剂改性的研究进程
曾杰生, 王瑞彬, 何蕾
广东顺德创新设计研究院,佛山528311
Research progress on modification of TiO2 photocatalyst
Zeng Jiesheng, Wang Ruibin, He Lei
Guangdong Shunde Innovation Design Institute,Foshan 528311
下载:  PDF (1189KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 二氧化钛(TiO2)是一种具备化学稳定性高、环境友好和毒性低等优势的绿色环保型半导体材料,在催化、传感、产氢、光学和光电学等领域应用广泛。但是该材料只对紫外光有响应,另外光生电子和空穴容易复合,导致光催化活性和量子效率降低。综述了贵金属沉积、复合半导体、离子掺杂及染料光敏化4种TiO2改性方法的最新研究进程。这4种方法都旨在提高TiO2对太阳光的利用率,或者增加其晶体表面的活性位点,达到抑制光生电子和空穴复合的作用。此外,展望了未来TiO2光催化材料改性研发的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾杰生
王瑞彬
何蕾
关键词:  TiO2  光催化剂  半导体  改性方法  降解    
Abstract: TiO2 was semiconductor and widely applied in the fields of catalysis,sensing,hydrogen generation,optics and optoelectronics,benefited from its many advantages such as chemical stability,green to environment and low toxicity,etc.However,On the one hand,TiO2 only can be excited by UV,on the other hand,the rapid recombination of electron-hole (e-—h+) pairs after excitation that leading to decrease of catalytic activity and quantum efficiency.The latest research progress on four main modification methods of TiO2 including surface deposition of noble metal,semiconductor composite,ion doping and dye sensitization was introduced respectively.These all methods were aimed to make full use of the sunlight,or to induce crystal surface defects to restrain the recombination of electron-hole pairs.Finally,the modification of TiO2 photocatalyst in the future was predicted.
Key words:  TiO2    photocatalyst    semiconductor    modification method    degradation
收稿日期:  2016-12-06                出版日期:  2018-03-20      发布日期:  2018-04-09      期的出版日期:  2018-03-20
作者简介:  曾杰生(1989-),男,硕士,工程师,从事金属纳米材料合成及改性方面的研究。
引用本文:    
曾杰生, 王瑞彬, 何蕾. TiO2光催化剂改性的研究进程[J]. 化工新型材料, 2018, 46(3): 27-33.
Zeng Jiesheng, Wang Ruibin, He Lei. Research progress on modification of TiO2 photocatalyst. New Chemical Materials, 2018, 46(3): 27-33.
链接本文:  
http://www.hgxx.org/CN/  或          http://www.hgxx.org/CN/Y2018/V46/I3/27
[1] Fujishima A.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238:37-38.
[2] Zhang J,Wu W,Yan S,et al.Enhanced photocatalytic activity for the degradation of rhodamine B by TiO2 modified with Gd2O3 calcined at high temperature[J].Applied Surface Science,2015,344:249-256.
[3] Koparde V N,Cummings P T.Phase transformations during sintering of titania nanoparticles[J].ACS Nano,2008,2(8):1620-1624.
[4] Matthews R W,Mcevoy S R.A comparison of 254nm and 350nm excitation of TiO2 in simple photocatalytic reactors[J].Journal of Photochemistry and Photobiology A Chemistry,1992,66(3):355-366.
[5] Kochuveedu S T,Kim,D P,Kim D H.Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration[J].The Journal of Physical Chemistry C,2012,116(3):2500-2506.
[6] Pu Y C,Wang G,Chang K D,et al.Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting[J].Nano Letters,2013,13(8):3817-3823.
[7] Bian Z,Tachikawa T,Zhang P,et al.Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity[J].Journal of the American Chemical Society,2013,136(1):458-465.
[8] Kotolevich Y,Kolobova E,Mamontov G,et al.Au/TiO2 catalysts promoted with Fe and Mg for n-octanol oxidation under mild conditions[J].Catalysis Today,2016,278:104-112.
[9] Klein M,Nadolna J,Goł?abiewska A,et al.The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO2 by radiolytic method[J].Applied Surface Science,2016,378:37-48.
[10] Zhang D F,Wang J X.UV-visible light-activated Au@ pre-sulphated,monodisperse TiO2 aggregates for treatment of congo red and phthalylsulfathiazole[J].Journal of Water Process Engineering,2015,7:187-195.
[11] Padilla R H,Priecel P,Lin M,et al.A versatile sonication-assisted deposition-reduction method for preparing supported metal catalysts for catalytic applications[J].Ultrasonics Sonochemistry,2017,35:631-639.
[12] Jaafar N F,Jalil A A,Triwahyono S,et al.Direct in situ activation of Ag0 nanoparticles in synthesis of Ag/TiO2 and its photoactivity[J].Applied Surface Science,2015,38:75-84.
[13] Arabzadeh A,Salimi A.One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation[J].Journal of Colloid and Interface Science,2016,479:43-54.
[14] Wu G,Li J,Fang Z T,et al.FeVO4 nanorods supported TiO2 as a superior catalyst for NH3-SCR reaction in a broad temperature range[J].Catalysis Communications,2015,64:75-79.
[15] Chu H,Lei W,Liu X,et al.Synergetic effect of TiO2 as co-catalyst for enhanced visible light photocatalytic reduction of Cr(Ⅵ) on MoSe2[J].Applied Catalysis A:General,2016,521:19-25.
[16] Das L,Basu J K.Photocatalytic treatment of textile effluent using titania-zirconia nanocomposite catalyst[J].Journal of Industrial and Engineering Chemistry,2015,2:245-250.
[17] Shen J,Yang H,Shen Q,et al.Template-free preparation and properties of mesoporous g-C3N4/TiO2 nanocomposite photocatalyst[J].Cryst Eng Comm,2014,16(10):1868-1872.
[18] Shen J,Yang H,Feng Y,et al.Synthesis of 3D hierarchical porous TiO2/InVO4 nanocomposites with enhanced visible-light photocatalytic properties[J].Solid State Sciences,2014,32(3):8-12.
[19] Gao H,Wang H,Jin Y,et al.Controllable fabrication of immobilized ternary CdS/Pt-TiO2 heteronanostructures toward high-performance visible-light driven photocatalysis[J].Physical Chemistry Chemical Physics,2015,17(27):17755-17761.
[20] Feng H,Tang N,Zhang S,et al.Fabrication of layered (CdS-Mn/MoS2/CdTe)-promoted TiO2 nanotube arrays with superior photocatalytic properties[J].Journal of Colloid and Interface Science,2017,486:58-66.
[21] Borgarello E,Kiwi J,Graetzel M,et al.Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles[J].Journal of the American Chemical Society,1982,104(11):2996-3002.
[22] Wang Q,Jin R,Zhang M,et al.Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance[J].Journal of Alloys and Compounds,2017,690:139-144.
[23] Inturi S N R,Suidan M,Smirniotis P G.Influence of synthesis method on leaching of the Cr-TiO2 catalyst for visible light liquid phase photocatalysis and their stability[J].Applied Catalysis B Environmental,2016,180:351-361.
[24] Ma C,Wang F,Zhang C,et al.Photocatalytic decomposition of Congo red under visible light irradiation using MgZnCr-TiO2 layered double hydroxide[J].Chemosphere,2017,168:80-90.
[25] Villabonaleal E G,López-Neira J P,Pedraza-Avella J A,et al.Screening of factors influencing the photocatalytic activity of TiO2∶Ln(Ln=La,Ce,Pr,Nd,Sm,Eu and Gd) in the degradation of dyes[J].Computational Materials Science,2015,107(6):48-53.
[26] 魏健,沈常宇,代凯.铒掺杂二氧化钛制备及其光催化性能研究[J].中国计量学院学报,2015,26(1):80-86.
[27] Malengreaux C M,Pirard S L,Léonard G,et al.Study of the photocatalytic activity of Fe3+,Cr3+,La3+ and Eu3+ single-doped and co-doped TiO2 catalysts produced by aqueous sol-gel processing[J].Journal of Alloys and Compounds,2017,691:726-738.
[28] Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science,2001,293(5528):269-271.
[29] Simsek E B.Solvothermal synthesized boron doped TiO2 catalysts:photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation[J].Applied Catalysis B Environmental,2017,200:309-322.
[30] He D,Li Y,Wu J,et al.Carbon wrapped and doped TiO2 mesoporous nanostructure with efficient visible-light photocatalysis for NO removal[J].Applied Surface Science,2017,391:318-325.
[31] Elsheikh S M,Khedr T M,Hakki A,et al.Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen[J].Separation and Purification Technology,2017,173:258-268.
[32] 张新亚,宋子健,周府治,等.氟氮共掺杂二氧化钛/还原氧化石墨稀复合光催化剂的制备及其可见光催化性能[J].硅酸盐学报,2015,43(7):919-925.
[33] Zhang Y,Li L,Liu H,et al.Graphene oxide and fco-doped TiO2 with (001) facets for the photocatalytic reduction of bromate:synthesis,characterization and reactivity[J].Chemical Engineering Journal,2017,307:860-867.
[34] Lei X F,Zhang Z N,Wu Z X,et al.Synthesis and characterization of Fe,N and C tri-doped polymorphic TiO2 and the visible light photocatalytic reduction of Cr(Ⅵ)[J].Separation and Purification Technology,2017,174:66-74.
[35] Chen Y,Liu K.Fabrication of Ce/N co-doped TiO2/diatomite granule catalyst and its improved visible-light-driven photoactivity[J].Journal of Hazardous Materials,2017,324,139-150.
[36] Han Y,Zhang J,Zhao Y.Visible-light-induced photocatalytic oxidation of nitric oxide and sulfur dioxide:discrete kinetics and mechanism[J].Energy,2016,103:725-734.
[37] Wan J,Wei M,Hu Z,et al.Ternary composites of TiO2 nanotubes with reduced graphene oxide (RGO) and meso-tetra (4-carboxyphenyl) porphyrin for enhanced visible light photocatalysis[J].International Journal of Hydrogen Energy,2016,41(33):14692-14703.
[38] Zoltan T,Rosales M C,Yadarola C.Reactive oxygen species quantification and their correlation with the photocatalytic activity of TiO2 (anatase and rutile) sensitized with asymmetric porphyrins[J].Journal of Environmental Chemical Engineering,2016,4(4):3967-3980.
[39] Wei M,Wan J,Hu Z,et al.Preparation,characterization and visible-light-driven photocatalytic activity of a novel Fe(Ⅲ) porphyrin-sensitized TiO2 nanotube photocatalyst[J].Applied Surface Science,2017,391,267-274.
[40] Zhao X,Liu X,Yu M,et al.The highly efficient and stable Cu,Co,Zn-porphyrin-TiO2 photocatalysts with heterojunction by using fashioned one-step method[J].Dyes and Pigments,2017,136:648-656.
[41] Wei M,Wan J,Hu Z,et al.Enhanced photocatalytic degradation activity over TiO2 nanotubes co-sensitiz by reduced graphene oxide and copper(Ⅱ) meso-tetra (4-carboxyphenyl) porphyrin[J].Applied Surface Science,2016,377:149-158.
[42] Chowdhury P,Athapaththu S,Elkamel A,et al.Visible-solar-light-driven photo-reduction and removal of cadmium ion with eosin y-sensitized TiO2 in aqueous solution of triethanolamine[J].Separation and Purification Technology,2017,174:109-115.
[43] Altin I,Sökmen M,Biyiklioğlu Z.Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal[J].Materials Science in Semiconductor Processing,2016,45:36-44.
[44] Albay C,Koç M,Altin I,et al.New dye sensitized photocatalysts:copper(Ⅱ)-phthalocyanine/TiO2 nanocomposite for water remediation[J].Journal of Photochemistry and Photobiology A:Chemistry,2016,324:117-125.
[1] 杨晓龙, 张义, 刘子森, 夏世斌, 贺锋, 吴振斌. 纳米光催化剂处理难降解性有机物的研究进展[J]. 化工新型材料, 2018, 46(8): 38-41.
[2] 熊乐艳, 张楠, 郭赞如, 马伟, 郑龙珍. 掺N纳米TiO2光催化材料的制备及其光催化性能研究[J]. 化工新型材料, 2018, 46(8): 97-101.
[3] 张明玉, 蔡文迪, 孙岚, 张正中. 微波烧结法制备羟基磷灰石/TiO2复合涂层[J]. 化工新型材料, 2018, 46(8): 166-169.
[4] 黄云镜, 于计生, 唐丽梅, 李青松. 太阳光下TiO2光催化还原Cr(Ⅵ)影响因素研究[J]. 化工新型材料, 2018, 46(8): 191-194.
[5] 田林, 黄俊, 李荣兴, 李威, 谢刚, 杨妮, 俞小花. 氯化法制备纳米TiO2氧化机理的研究进展[J]. 化工新型材料, 2018, 46(8): 238-243.
[6] 林春玲, 焦小妮, 周玲, 常木蓝, 刘明杰. 水热法制备氧化石墨烯负载TiO2的研究[J]. 化工新型材料, 2018, 46(7): 81-84.
[7] 王杨, 段永华, 张军, 朱一明, 米刚. 超声协同Fenton体系氧化降解废水中的CCl4[J]. 化工新型材料, 2018, 46(7): 212-215.
[8] 金奇杰, 潘有春, 陶兴军, 沈岳松, 祝社民. Al3+掺入对CeO2(ZrO2)/TiO2催化剂脱硝性能的影响[J]. 化工新型材料, 2018, 46(7): 227-231.
[9] 张敬, 孙学凤, 高婷婷, 周国伟. TiO2/MoS2复合材料的制备及其在光催化和储能电池中的应用研究进展[J]. 化工新型材料, 2018, 46(6): 43-47.
[10] 林源. 薄膜太阳能电池的研究与应用进展[J]. 化工新型材料, 2018, 46(6): 57-60.
[11] 王驰, 张萍, 许丽, 王莉. 银负载氧化钛包覆碳酸钙的复合纳米催化剂的制备及性能研究[J]. 化工新型材料, 2018, 46(6): 180-183.
[12] 胡成明, 赵宇, 宋伟光, 朱熠, 戴世栋. 贝壳粉/Ag2O复合光催化剂制备及性能研究[J]. 化工新型材料, 2018, 46(6): 184-186.
[13] 冉薇, 刘涛, 王辉, 魏凤玉. 可磁回收的CoFe2O4@RGO@TiO2催化剂制备及掺杂改性研究[J]. 化工新型材料, 2018, 46(6): 187-189.
[14] 严加安, 胡兆平, 陈剑秋, 庞世花. 可降解功能化聚氨酯材料的研究进展[J]. 化工新型材料, 2018, 46(5): 218-221.
[15] 刘文慧, 赵志换, 薛永强, 常宏宏. 纳米TiO2/粉煤灰微珠光催化复合材料制备方法的比较[J]. 化工新型材料, 2018, 46(5): 121-125.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《化工新型材料》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn