Research progress of MOFs used for methane adsorption and storage

Expand
  • College of Chemical Engineering,Beijing University of Chemical Technology,Beijing 100029

Received date: 2019-09-18

  Revised date: 2020-10-29

  Online published: 2021-01-27

Abstract

Adsorption storage has become the development direction for methane storage in the future due to the economical and safe characteristics of adsorbed natural gas.Consequently,it is necessary to select suitable storage materials.metal-organic frameworks(MOFs) have been widely used in the field of gas adsorption and storage due to their large specific surface area and pore volume,as well as the introduction of functional groups for modification.The structural characteristics of MOFs and their advantages in CH4 storage were summarized,and reviewed the research progress of MOFs used for CH4 storage.Then,the adsorption properties of MOFs with different metal centers and different organic ligands were compared.The future research hotspots of MOFs used for CH4 storage were predicted at last.

Cite this article

Li Xiang, Gu Hengchang, Zhang Jiajin, Li Jianwei . Research progress of MOFs used for methane adsorption and storage[J]. New Chemical Materials, 2021 , 49(1) : 56 -60 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.01.013

References

[1] Zheng J,Li H,Yu Z,et al.Progress in natural gas adsorption storage[J].Chemistry,2011,74(8):693-700.
[2] 吴华伟,程绍娟,赵强,等.甲烷存储及其吸附技术进展[J].山西化工,2008,28(6):31-34.
[3] 周玲玲,汤立红,宁平,等.金属有机骨架材料在气体吸附与分离中的应用研究进展[J].材料导报,2017,31(19):112-121.
[4] Hui W,Wei Z,Taner Y.High-capacity methane storage in metal-organic frameworks M2(dhtp):the important role of open metal sites[J].Journal of the American Chemical Society,2009,131(13):4995-5000.
[5] Tsivion E,Mason J A,Gonzalez M I,et al.A computational study of CH4 storage in porous framework materials with metalated linkers:connecting the atomistic character of CH4 binding sites to usable capacity[J].Chemical Science,2016,7(7):4503-4518.
[6] Nandasiri M I,Jambovane S R,Mcgrail B P,et al.Adsorption,separation,and catalytic properties of densified metal-organic frameworks[J].Coordination Chemistry Reviews,2016,311(38-52.
[7] Koh H S,Rana M K,Wongfoy A G,et al.Predicting methane storage in open-metal-site metal-organic frameworks[J].Journal of Physical Chemistry C,2015,119(24):150527120235004.13451-13458.
[8] Li B,Wen H M,Zhou W,et al.Porous metal-organic frameworks for gas storage and separation:what,how,and why?[J].Journal of Physical Chemistry Letters,2014,5(20):3468.
[9] Alezi D,Belmabkhout Y,Suyetin M,et al.MOF crystal chemistry paving the way to gas storage needs:aluminum-basedsoc-MOF for CH4,O2,and CO2 storage[J].Journal of the American Chemical Society,2015,137(41):13308-13318.
[10] Yang L,Jing L,Ming C,et al.Theoretical studies of CO2 adsorption mechanism on linkers of metal-organic frameworks[J].Fuel,2012,95(1):521-527.
[11] Zhou W,Wu H,Yildirim T.Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites:strong dependence of the binding strength on metal ions[J].Journal of the American Chemical Society,2008,130(46):15268.
[12] 金属有机框架吸附存储与分离CH4、CO2研究进展[J].化工新型材料,2018,46(9):57-60,65.
[13] Peng Y,Krungleviciute V,Eryazici I,et al.Methane storage in metal-organic frameworks:current records,surprise findings,and challenges[J].Journal of the American Chemical Society,2013,135(32):11887.
[14] Li B,Wen H M,Wang H,et al.A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity[J].Journal of the American Chemical Society,2014,136(17):6207-6210.
[15] Chang G,Li B,Wang H,et al.A microporous metal-organic framework with polarized trifluoromethyl groups for high methane storage[J].Chemical Communications,2015,51(79):14789.
[16] Bai J,Zhang M,Zhou W,et al.Fine tuning of MOF-505 analogues to reduce low pressure methane uptake and enhance methane working capacity[J].Angew Chem Int Ed Engl,2017,56(38):11426.
[17] Chang G,Wen H M,Li B,et al.A fluorinated metal-organic framework for high methane storage at room temperature[J].Crystal Growth & Design,2016,16(6):3395-3399.
[18] Wang X S,Ma S,Rauch K,et al.Metal-organic frameworks based on double-bond-coupled Di-Isophthalate linkers with high hydrogen and methane uptakes[J].Chemistry of Materials,2008,20(9):3145-3152.
[19] He Y,Zhou W,Yildirim T,et al.A series of metal-organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity[J].Energy & Environmental Science,2013,6(9):2735-2744.
[20] Farha O K,Wilmer C E,Eryazici I,et al.Designing higher surface area metal-organic frameworks:are triple bonds better than phenyls?[J].Journal of the American Chemical Society,2012,134(24):9860.
[21] Eddaoudi M,Kim J,Rosi N,et al.Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J].Science,2002,295(5554):469-472.
[22] Mason J A,Oktawiec J,Taylor M K,et al.Methane storage in flexible metal-organic frameworks with intrinsic thermal management[J].Nature,2015,527(7578):357-361.
[23] Tu T N,Nguyen H T D,Tran N T.Tailoring the pore size and shape of the one-dimensional channels in iron-based MOFs for enhancing the methane storage capacity[J].Inorganic Chemistry Frontiers,2019,(9):2441-2447.
[24] Furukawa H,Ko N,Go Y B,et al.Ultrahigh porosity in metal-organic frameworks[J].Science,2010,329(5990):424-428.
[25] Rallapalli P,Patil D,Prasanth K P,et al.An alternative activation method for the enhancement of methane storage capacity of nanoporous aluminium terephthalate,MIL-53(Al)[J].Journal of Porous Materials,2010,17(5):523-528.
[26] Chae H K,Siberiop Rez D Y,Kim J,et al.A route to high surface area,porosity and inclusion of large molecules in crystals[J].Nature,2004,427(6974):523.
[27] Zhou W,Wu H,Yildirim T.Enhanced H2adsorption in isostructural metal-organic frameworks with open metal sites:strong dependence of the binding strength on metal ions[J].Journal of the American Chemical Society,2008,130(46):15268-15269.
[28] Hyeon S,Kim Y C,Kim J.Computational prediction of high methane storage capacity in V-MOF-74[J].Physical Chemistry Chemical Physics,2017,19(31):21132-21139.
[29] Maspoch D,Ruizmolina D,Wurst K,et al.A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties[J].Nature Materials,2003,2(3):190-195.
[30] Tian T,Zeng Z,Vulpe D,et al.A sol-gel monolithic metal-organic framework with enhanced methane uptake[J].Nature Materials,2018,12(7):174-179.
[31] Millange F,Guillou N,Walton R I,et al.Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks[J].Chemical Communications,2008,39(39):4732-4734.
[32] Wu H,Simmons J M,Liu Y,et al.Metal-organic frameworks with exceptionally high methane uptake:where and how is methane stored?[J].Chemistry (Weinheim an der Bergstrasse,Germany),2010,16(17):5205-5214.
[33] Wilmer C E,Farha O K,Yildirim T,et al.Gram-scale,high-yield synthesis of a robust metal-organic framework for storing methane and other gases[J].Energy & Environmental Science,2013,6(4):1158-1163.
[34] Yan Y,Yang S,Blake A J,et al.A mesoporous metal-organic framework constructed from a nanosized C3-symmetric linker and [Cu24(isophthalate)24] cuboctahedra[J].Chemical Communications,2011,47(36):9995-9997.
[35] Yang P,Gadipelli S,Wilmer C E,et al.Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal-organic framework NU-111[J].Chemical Communications,2013,49(29):2992-2994.
[36] Lucena S M,Mileo P G,Silvino P F,et al.Unusual adsorption site behavior in PCN-14 metal-organic framework predicted from monte carlo simulation[J].Journal of the American Chemical Society,2011,133(48):19282-19285.
[37] Mercado R,Vlaisavljevich B,Lin L C,et al.Force field development from periodic density functional theory calculations for gas separation applications using metal-organic frameworks[J].Journal of Physical Chemistry C,2016,120(23):12590-12604.
[38] Wu X,Xiang S,Su J,et al.Understanding quantitative relationship between methane storage capacities and characteristic properties of metal-organic frameworks based on machine learning[J].The Journal of Physical Chemistry C,2019,123(14):8550-8559.
[39] Fanourgakis G S,Gkagkas K,Tylianakis E,et al.A robust machine learning algorithm for the prediction of methane adsorption in nanoporous materials[J].The Journal of Physical Chemistry A,2019,123(28):6080-6087.
Options
Outlines

/