[1] Zheng J,Li H,Yu Z,et al.Progress in natural gas adsorption storage[J].Chemistry,2011,74(8):693-700.
[2] 吴华伟,程绍娟,赵强,等.甲烷存储及其吸附技术进展[J].山西化工,2008,28(6):31-34.
[3] 周玲玲,汤立红,宁平,等.金属有机骨架材料在气体吸附与分离中的应用研究进展[J].材料导报,2017,31(19):112-121.
[4] Hui W,Wei Z,Taner Y.High-capacity methane storage in metal-organic frameworks M2(dhtp):the important role of open metal sites[J].Journal of the American Chemical Society,2009,131(13):4995-5000.
[5] Tsivion E,Mason J A,Gonzalez M I,et al.A computational study of CH4 storage in porous framework materials with metalated linkers:connecting the atomistic character of CH4 binding sites to usable capacity[J].Chemical Science,2016,7(7):4503-4518.
[6] Nandasiri M I,Jambovane S R,Mcgrail B P,et al.Adsorption,separation,and catalytic properties of densified metal-organic frameworks[J].Coordination Chemistry Reviews,2016,311(38-52.
[7] Koh H S,Rana M K,Wongfoy A G,et al.Predicting methane storage in open-metal-site metal-organic frameworks[J].Journal of Physical Chemistry C,2015,119(24):150527120235004.13451-13458.
[8] Li B,Wen H M,Zhou W,et al.Porous metal-organic frameworks for gas storage and separation:what,how,and why?[J].Journal of Physical Chemistry Letters,2014,5(20):3468.
[9] Alezi D,Belmabkhout Y,Suyetin M,et al.MOF crystal chemistry paving the way to gas storage needs:aluminum-basedsoc-MOF for CH4,O2,and CO2 storage[J].Journal of the American Chemical Society,2015,137(41):13308-13318.
[10] Yang L,Jing L,Ming C,et al.Theoretical studies of CO2 adsorption mechanism on linkers of metal-organic frameworks[J].Fuel,2012,95(1):521-527.
[11] Zhou W,Wu H,Yildirim T.Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites:strong dependence of the binding strength on metal ions[J].Journal of the American Chemical Society,2008,130(46):15268.
[12] 金属有机框架吸附存储与分离CH4、CO2研究进展[J].化工新型材料,2018,46(9):57-60,65.
[13] Peng Y,Krungleviciute V,Eryazici I,et al.Methane storage in metal-organic frameworks:current records,surprise findings,and challenges[J].Journal of the American Chemical Society,2013,135(32):11887.
[14] Li B,Wen H M,Wang H,et al.A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity[J].Journal of the American Chemical Society,2014,136(17):6207-6210.
[15] Chang G,Li B,Wang H,et al.A microporous metal-organic framework with polarized trifluoromethyl groups for high methane storage[J].Chemical Communications,2015,51(79):14789.
[16] Bai J,Zhang M,Zhou W,et al.Fine tuning of MOF-505 analogues to reduce low pressure methane uptake and enhance methane working capacity[J].Angew Chem Int Ed Engl,2017,56(38):11426.
[17] Chang G,Wen H M,Li B,et al.A fluorinated metal-organic framework for high methane storage at room temperature[J].Crystal Growth & Design,2016,16(6):3395-3399.
[18] Wang X S,Ma S,Rauch K,et al.Metal-organic frameworks based on double-bond-coupled Di-Isophthalate linkers with high hydrogen and methane uptakes[J].Chemistry of Materials,2008,20(9):3145-3152.
[19] He Y,Zhou W,Yildirim T,et al.A series of metal-organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity[J].Energy & Environmental Science,2013,6(9):2735-2744.
[20] Farha O K,Wilmer C E,Eryazici I,et al.Designing higher surface area metal-organic frameworks:are triple bonds better than phenyls?[J].Journal of the American Chemical Society,2012,134(24):9860.
[21] Eddaoudi M,Kim J,Rosi N,et al.Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J].Science,2002,295(5554):469-472.
[22] Mason J A,Oktawiec J,Taylor M K,et al.Methane storage in flexible metal-organic frameworks with intrinsic thermal management[J].Nature,2015,527(7578):357-361.
[23] Tu T N,Nguyen H T D,Tran N T.Tailoring the pore size and shape of the one-dimensional channels in iron-based MOFs for enhancing the methane storage capacity[J].Inorganic Chemistry Frontiers,2019,(9):2441-2447.
[24] Furukawa H,Ko N,Go Y B,et al.Ultrahigh porosity in metal-organic frameworks[J].Science,2010,329(5990):424-428.
[25] Rallapalli P,Patil D,Prasanth K P,et al.An alternative activation method for the enhancement of methane storage capacity of nanoporous aluminium terephthalate,MIL-53(Al)[J].Journal of Porous Materials,2010,17(5):523-528.
[26] Chae H K,Siberiop Rez D Y,Kim J,et al.A route to high surface area,porosity and inclusion of large molecules in crystals[J].Nature,2004,427(6974):523.
[27] Zhou W,Wu H,Yildirim T.Enhanced H2adsorption in isostructural metal-organic frameworks with open metal sites:strong dependence of the binding strength on metal ions[J].Journal of the American Chemical Society,2008,130(46):15268-15269.
[28] Hyeon S,Kim Y C,Kim J.Computational prediction of high methane storage capacity in V-MOF-74[J].Physical Chemistry Chemical Physics,2017,19(31):21132-21139.
[29] Maspoch D,Ruizmolina D,Wurst K,et al.A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties[J].Nature Materials,2003,2(3):190-195.
[30] Tian T,Zeng Z,Vulpe D,et al.A sol-gel monolithic metal-organic framework with enhanced methane uptake[J].Nature Materials,2018,12(7):174-179.
[31] Millange F,Guillou N,Walton R I,et al.Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks[J].Chemical Communications,2008,39(39):4732-4734.
[32] Wu H,Simmons J M,Liu Y,et al.Metal-organic frameworks with exceptionally high methane uptake:where and how is methane stored?[J].Chemistry (Weinheim an der Bergstrasse,Germany),2010,16(17):5205-5214.
[33] Wilmer C E,Farha O K,Yildirim T,et al.Gram-scale,high-yield synthesis of a robust metal-organic framework for storing methane and other gases[J].Energy & Environmental Science,2013,6(4):1158-1163.
[34] Yan Y,Yang S,Blake A J,et al.A mesoporous metal-organic framework constructed from a nanosized C3-symmetric linker and [Cu24(isophthalate)24] cuboctahedra[J].Chemical Communications,2011,47(36):9995-9997.
[35] Yang P,Gadipelli S,Wilmer C E,et al.Simultaneously high gravimetric and volumetric methane uptake characteristics of the metal-organic framework NU-111[J].Chemical Communications,2013,49(29):2992-2994.
[36] Lucena S M,Mileo P G,Silvino P F,et al.Unusual adsorption site behavior in PCN-14 metal-organic framework predicted from monte carlo simulation[J].Journal of the American Chemical Society,2011,133(48):19282-19285.
[37] Mercado R,Vlaisavljevich B,Lin L C,et al.Force field development from periodic density functional theory calculations for gas separation applications using metal-organic frameworks[J].Journal of Physical Chemistry C,2016,120(23):12590-12604.
[38] Wu X,Xiang S,Su J,et al.Understanding quantitative relationship between methane storage capacities and characteristic properties of metal-organic frameworks based on machine learning[J].The Journal of Physical Chemistry C,2019,123(14):8550-8559.
[39] Fanourgakis G S,Gkagkas K,Tylianakis E,et al.A robust machine learning algorithm for the prediction of methane adsorption in nanoporous materials[J].The Journal of Physical Chemistry A,2019,123(28):6080-6087.