Review in preparation and application of rGO-based catalytic material

Expand
  • School of Chemical Engineering and Technology,Hubei Key Laboratory of Coal Conversion and New Carbon Material,Wuhan University of Science and Technology,Wuhan 430081

Received date: 2019-09-11

  Revised date: 2020-09-11

  Online published: 2021-01-21

Abstract

Graphene(rGO)has a unique 2D structure,large specific surface area,high charge mobility,easy surface functionalization,good acid and alkali resistance and high temperature resistance,which can adsorb and desorb various molecules.Therefore it is considered to be excellent catalyst-supported material.The rGO is not only a carrier for the catalyst,but is itself an active ingredient.The preparation process and method of single and supported rGO catalysts,and their applications and prospects in the field of catalysis were reviewed.

Cite this article

Qin Ronghua, Zeng Danlin, Wang Rong, Yang Yuanyuan, Wang Guanghui . Review in preparation and application of rGO-based catalytic material[J]. New Chemical Materials, 2020 , 48(12) : 29 -33 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.12.008

References

[1] Dreyer D R,Park S,Bielawski C W,et al.The chemistry of graphene oxide[J].Chemical Society Reviews,2010,39(1):228-240.
[2] Hummers Jr W S,Offeman R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339-1339.
[3] McAllister M J,Li J L,Adamson D H,et al.Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J].Chemistry of Materials,2007,19(18):4396-4404.
[4] Schniepp H C,Li J L,McAllister M J,et al.Functionalized single graphene sheets derived from splitting graphite oxide[J].The Journal of Physical Chemistry B,2006,110(17):8535-8539.
[5] Wu Z S,Ren W,Gao L,et al.Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation[J].ACS Nano,2009,3(2):411-417.
[6] Zhu Y,Murali S,Stoller M D,et al.Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors[J].Carbon,2010,48(7):2118-2122.
[7] Dikin D A,Stankovich S,Zimney E J,et al.Preparation and characterization of graphene oxide paper[J].Nature,2007,448(7152):457.
[8] Paredes J I,Villar-Rodil S,Martínez-Alonso A,et al.Graphene oxide dispersions in organic solvents[J].Langmuir,2008,24(19):10560-10564.
[9] 陈文政.石墨烯的制备方法及前景[J].信息记录材料,2017,18(2):24.
[10] Park S,Ruoff R S.Chemical methods for the production of graphenes[J].Nat Nanotechnol,2009,4(4):217-224.
[11] 黄海平,朱俊杰.新型碳材料——石墨烯的制备及其在电化学中的应用[J].分析化学,2011,39(7):963-971.
[12] Zhong Y L,Tian Z,Slmong P,et al.Scalable production of graphene via wet chemistry:progress and challenges[J].Materials Today,2015,18(2):73-78.
[13] Shivraman S,Barton R A,Yu X,et al.Freestanding epitaxial graphene[J].Nano Letters,2009,9(9):3100-3105.
[14] Gao Y,Huang P,Sun P,et al.Preparation and application of graphene/cellulose composites[J].Progress in Chemistry,2016,25(5):647-656.
[15] Edwards R S,Coleman K S.Graphene synthesis:relationship to applications[J].Nanoscale,2013,5(1):38-51.
[16] Si Y,Samulski E T.Synthesis of water soluble graphene[J].Nano Letters,2008,8(6):1679-1682.
[17] 杨敬贺.石墨烯基催化剂的合成及催化性能研究[D].大连:大连理工大学,2013.
[18] Li D,Müller M B,Gilje S,et al.Processable aqueous dispersions of graphene nanosheets[J].Nature Nanotechnology,2008,3(2):101.
[19] Shin H J,Kim K K,Benayad A,et al.Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J].Advanced Functional Materials,2009,19(12):1987-1992.
[20] Fernández-Merino M J,Guardia L,Paredes J I,et al.Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions[J].The Journal of Physical Chemistry C,2010,114(14):6426-6432.
[21] Zhang J,Yang H,Shen G,et al.Reduction of graphene oxide via L-ascorbic acid[J].Chemical Communications,2010,46(7):1112-1114.
[22] Gao J,Liu F,Liu Y,et al.Environment-friendly method to produce graphene that employs vitamin C and amino acid[J].Chemistry of Materials,2010,22(7):2213-2218.
[23] 展学成,邹欣,马好文,等.石墨烯基催化剂及其催化加氢应用研究进展[J].石化技术与应用,2017,35(2):160-164.
[24] Ye B,Lee M W,Jeong B,et al.Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3[J].Catalysis Today,2019,328:300-306.
[25] Sun J,Fu Y,He G,et al.Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/graphene nanocomposite[J].Catalysis Science & Technology,2014,4(6):1742-1748.
[26] 黄冬根,莫壮洪,全水清,等.石墨烯/纳米TiO2复合材料的制备及光催化还原性能[J].复合材料学报,2016,33(1):155-162.
[27] Dreyer D R,Jia H P,Bielawski C W.Graphene oxide:a convenient carbocatalyst for facilitating oxidation and hydration reactions[J].Angewandte Chemie International Edition,2010,49(38):6813-6816.
[28] Long Y,Zhang C,Wang X,et al.Oxidation of SO2 to SO3 catalyzed by graphene oxide foams[J].Journal of Materials Chemistry,2011,21(36):13934-13941.
[29] Gao Y,Ma D,Wang C,et al.Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature[J].Chemical Communications,2011,47(8):2432-2434.
[30] Wang L,Tian C,Wang H,et al.Mass production of graphene via an in situ self-generating template route and its promoted activity as electrocatalytic support for methanol electroxidization[J].The Journal of Physical Chemistry C,2010,114(19):8727-8733.
[31] Ji X,Niu X,Li B,et al.Selective hydrogenation of cinnamaldehyde to cinnamal alcohol over platinum/graphene catalysts[J].Chem Cat Chem,2014,6(11):3246-3253.
[32] 康乐,张耀君,杨梦阳,等.石墨烯纳米复合材料合成及其在光催化氧化降解和还原制备氢能中应用的研究进展[J].材料导报,2016,30(10):54-62.
[33] Niu M,Cheng D,Cao D.Understanding the mechanism of photocatalysis enhancements in the graphene-like semiconductor sheet/TiO2 composites[J].The Journal of Physical Chemistry C,2014,118(11):5954-5960.
[34] 张宏忠,秦小青,王明花.石墨烯/TiO2复合物的制备及其光催化性能[J].环境工程学报,2016,10(1):169-174.
[35] 言文远,周琪,陈星,等.两步水热法制备还原氧化石墨烯/纳米TiO2复合材料及其光催化性能[J].复合材料学报,2016,33(1):123-131.
[36] Chun H H,Lee J Y,Lee J H,et al.Enhanced photocatalysis of graphene and TiO2 dual-coupled carbon nanofibers post-treated at various temperatures[J].Industrial & Engineering Chemistry Research,2015,55(1):45-53.
Options
Outlines

/