[1] Yaghi O M, Li H.Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J].Journal of the American Chemical Society, 1995, 117(41):10401-10402.
[2] Yang S, Lin X, Lewis W, et al.A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide[J].Nature Materials, 2012, 11(8):710.
[3] Yoon M, Srirambalaji R, Kim K.Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis[J].Chemical Reviews, 2011, 112(2):1196-1231.
[4] Xue D X, Belmabkhout Y, Shekhah O, et al.Tunable rare earth fcu-MOF platform:access to adsorption kinetics driven gas/vapor separations via pore size contraction[J].Journal of the American Chemical Society, 2015, 137(15):5034-5040.
[5] Li B, Chrzanowski M, Zhang Y, et al.Applications of metal-organic frameworks featuring multi-functional sites[J].Coordination Chemistry Reviews, 2016, 307:106-129.
[6] Hou Y, Hu W, Gui Z, et al.Preparation of metal-organic frameworks and their application as flame retardants for polystyrene[J].Industrial & Engineering Chemistry Research, 2017, 56(8):2036-2045.
[7] Cui J F, Zhang Y B, Wang L R, et al.Phosphorus-containing salen-Ni metal complexes enhancing the flame retardancy and smoke suppression of epoxy resin composites[J].Journal of Applied Polymer Science, 2020, 137(21):48734.
[8] Carrasco S.Metal-organic frameworks for the development of biosensors:a current overview[J].Biosensors, 2018, 8(4):92.
[9] Xu X, Guo Y, Wang X, et al.Sensitive detection of pesticides by a highly luminescent metal-organic framework[J].Sensors and Actuators B:Chemical, 2018, 260:339-345.
[10] Valekar A H, Batule B S, Kim M I, et al.Novel amine-functionalized iron trimesates with enhanced peroxidase-like activity and their applications for the fluorescent assay of choline and acetylcholine[J].Biosensors and Bioelectronics, 2018, 100:161-168.
[11] Pintado-Sierra M, Rasero-Almansa A M, Corma A, et al.Bifunctional iridium-(2-aminoterephthalate)-Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction[J].Journal of Catalysis, 2013, 299:137-145.
[12] Fang J M, Leng F, Zhao X J, et al.Metal-organic framework MIL-101 as a low background signal platform for label-free DNA detection[J].Analyst, 2014, 139(4):801-806.
[13] Zhu X, Zheng H, Wei X, et al.Metal-organic framework (MOF):a novel sensing platform for biomolecules[J].Chemical Communications, 2013, 49(13):1276-1278.
[14] Li A, Xu W, Chen R, et al.Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin[J].Composites Part A:Applied Science and Manufacturing, 2018, 112:558-571.
[15] Zhao S, Wang Y, Dong J, et al.Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J].Nature Energy, 2016, 1(12):16184.
[16] Shieh F K, Wang S C, Leo S Y, et al.Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size[J].Chemistry-A European Journal, 2013, 19(34):11139-11142.
[17] Hu S, Yan J, Huang X, et al.A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties[J].Sensors and Actuators B:Chemical, 2018, 267:312-319.
[18] Zheng Y, Lu Y, Zhou K.A novel exploration of metal-organic frameworks in flame-retardant epoxy composites[J].Journal of Thermal Analysis and Calorimetry, 2019, 138(2):905-914.
[19] Shi Xiaowei, Dai Xiu, Cao Yu, et al.Degradable poly(lactic acid)/metal-organic Framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics[J].Industrial & Engineering Chemistry Research, 2017, 56(14):3887-3894.
[20] Hou Y, Hu W, Gui Z, et al.A novel Co(Ⅱ)-based metal-organic framework with phosphorus-containing structure:build for enhancing fire safety of epoxy[J].Composites Science and Technology, 2017, 152:231-242.
[21] Hou Y, Liu L, Qiu S, et al.DOPO-modified two-dimensional Co-based metal-organic framework:preparation and application for enhancing fire safety of poly (lactic acid)[J].ACS Applied Materials & Interfaces, 2018, 10(9):8274-8286.
[22] Xu W, Wang G, Liu Y, et al.Zeolitic imidazolate framework-8 was coated with silica and investigated as a flame retardant to improve the flame retardancy and smoke suppression of epoxy resin[J].RSC Advances, 2018, 8(5):2575-2585.
[23] Xu B, Xu W, Wang G, et al.Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin[J].Polymers for Advanced Technologies, 2018, 29(6):1733-1743.
[24] Guo H, Wang Y, Li C, et al.Construction of sandwich-structured CoAl-layered double hydroxide@zeolitic imidazolate framework-67 (CoAl-LDH@ZIF-67) hybrids:towards enhancing the fire safety of epoxy resins[J].RSC Advances, 2018, 8(63):36114-36122.
[25] Xu B, Xu W, Liu Y, et al.Surface modification of α-zirconium phosphate by zeolitic imidazolate frameworks-8 and its effect on improving the fire safety of polyurethane elastomer[J].Polymers for Advanced Technologies, 2018, 29(11):2816-2826.
[26] Xu W, Wang X, Liu Y, et al.Improving fire safety of epoxy filled with graphene hybrid incorporated with zeolitic imidazolate framework/layered double hydroxide[J].Polymer Degradation and Stability, 2018, 154:27-36.