Recent progress on preparation of kaolin-based composite and its application in photocatalysis

Expand
  • School of Chemistry and Environmental Engineering,Wuhan Institute of Technology, Wuhan 430205

Online published: 2020-10-20

Abstract

In the past decades,semiconductor photocatalysis have attracted worldwide interest owing to its potential application in solving environmental pollution and energy shortage.Nevertheless,semiconductor photocatalysts are tended to agglomerate,and difficult to separate and recover in practical application.Loading photocatalysts on certain supporters can effectively avoid the problem of agglomeration,and enhance their photocatalytic performance and stability.The research progress of kaolin-based composites in the photocatalytic field was systematically reviewed.The preparation method of kaolin-based photocatalysts and its application in the photocatalytic field were discussed.In addition,the catalytic mechanism of the kaolin-based composites was elaborated.Finally,the prospects of the future application of kaolin-based photocatalysts were given.

Cite this article

Wang Hui, Yang Wei, Liu Zheng, Li Jun, Qiu Xinhong, Guo Sheng . Recent progress on preparation of kaolin-based composite and its application in photocatalysis[J]. New Chemical Materials, 2020 , 48(10) : 241 -244 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.10.051

References

[1] Fujishima A, Honda K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature, 1972, 238(5358):37-38.
[2] Frank S N, Bard A J.Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J].The Journal of Physical Chemistry, 1977, 81(15):1484-1488.
[3] 赫荣安, 曹少文, 余家国.铋系光催化剂的形貌调控与表面改性研究进展[J].物理化学学报, 2016, 32(12):2842.
[4] 余家国, 许第发.银系半导体光催化材料研究进展[J].硅酸盐学报, 2017, 45(9):1240.
[5] 王春来, 李钒, 杨焜, 等.碳量子点-二氧化钛复合光催化剂的研究进展[J].材料导报, 2018, 32(19):3348-3357.
[6] 李国栋, 殷尧禹, 卢瑞, 等.高岭土提纯工艺及其应用研究进展[J].矿产保护与利用, 2018(4):30.
[7] 何曦, 杨华明, 唐爱东.粘土矿物负载型复合催化剂的研究进展[J].材料导报, 2011, 25(13):86-90.
[8] 王鼎, 简丽, 程琳, 等.改性高岭土的制备, 表征及其光催化性能[J].光谱学与光谱分析, 2012, 32(8):2209-2213.
[9] 姜三营, 许红亮, 李勇辉, 等.高岭土/纳米TiO2复合光催化材料制备及性能研究[J].人工晶体学报, 2013, 42(11):2322-2327.
[10] Vimonses V, Chong M N, Jin B.Evaluation of the physical properties and photodegradation ability of titania nanocrystalline impregnated onto modified kaolin[J].Microporous and Mesoporous Materials, 2010, 132(1-2):201-209.
[11] 邓中文, 郑玉婴, 龙海, 等.TiO2负载管状高岭土光催化剂的制备及其表征[J].功能材料, 2013, 44(6):874-877.
[12] Li C, Sun Z, Song A, et al.Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum[J].Applied Catalysis B:Environmental, 2018, 236:76-87.
[13] Deng S, Kang S, Feng N, et al.Mechanochemical mechanism of rapid dechlorination of hexachlorobenzene[J].Journal of Hazardous Materials, 2017, 333:116-127.
[14] 王旭明, 邓雁希, 王柏昆.机械力化学法制备TiO2/高岭土复合光催化剂[J].非金属矿, 2010, 33(6):58-60.
[15] Kutlkov K M, TokarskAy'5 J, KovArˇ5 P, et al.Preparation and characterization of photoactive composite kaolinite/TiO2[J].Journal of Hazardous Materials, 2011, 188(1-3):212-220.
[16] Henych J, Tengl V.Feasible synthesis of TiO2 deposited on kaolin for photocatalytic applications[J].Clays and Clay Minerals, 2013, 61(3):165-176.
[17] 马惠言, 简丽, 张前程.载体对负载型催化剂的光催化活性影响研究[J].内蒙古工业大学学报:自然科学版, 2011, 30(3):226-230.
[18] 吴称意, 覃春艳, 史伯安, 等.Bi掺杂TiO2/高岭土光催化剂的制备及其光催化性能研究[J].化工新型材料, 2016, 44(8):119-121.
[19] 丁海辉, 王倩, 纪美茹, 等.氮掺杂TiO2纳米管/高岭土复合光催化剂的制备及光催化性能[J].硅酸盐学报, 2011, 39(9):1511-1516.
[20] 徐志永, 白春华.金属氧化物掺杂高岭土纳米二氧化钛光催化复合材料研究[J].无机盐工业, 2016, 48(10):77-80.
[21] 牛凤兴.负载高岭土的ZnO的制备及其光催化性能研究[J].延安大学学报(自然科学版), 2014, 33(3):48-51.
[22] 牛凤兴, 高晓明, 王子航, 等.高岭土-ZnO光催化氧化-萃取脱除汽油中硫的研究[J].当代化工, 2016, 45(8):1671-1673.
[23] Shirzad-Siboni M, Farrokhi M, Darvishi Cheshmeh Soltani R, et al.Photocatalytic reduction of hexavalent chromium over ZnO nanorods immobilized on kaolin[J].Industrial & Engineering Chemistry Research, 2014, 53(3):1079-1087.
[24] Janíkov B, TokarskAy'5 J, Kutlkov K M, et al.Photoactive and non-hazardous kaolin/ZnO composites prepared by calcination of sodium zinc carbonate[J].Applied Clay Science, 2017, 143:345-353.
[25] Ran J, Guo W, Wang H, et al.Metal-free 2D/2D phosphorene/g-C3N4 van der waals heterojunction for highly enhanced visible-Light photocatalytic H2 production[J].Advanced Materials, 2018, 30(25):1800128.
[26] 姚光远, 黄伟欣, 李春全, 等.g-C3N4/高岭土复合材料的制备及其光催化性能研究[J].无机材料学报, 2016, 31(9):929-934.
[27] Shu Z, Xie C, Zhou J, et al.Nanoporous g-C3N4 nanosheets:facile synthesis and excellent visible-light photocatalytic H2 evolution performance[J].Journal of Alloys and Compounds, 2018, 747:140-148.
[28] Zhang Z, Lu L, Lv Z, et al.Porous carbon nitride with defect mediated interfacial oxidation for improving visible light photocatalytic hydrogen evolution[J].Applied Catalysis B:Environmental, 2018, 232:384-390.
[29] Hu K H, Liu Z, Huang F, et al.Synthesis and photocatalytic properties of nano-MoS2/kaolin composite[J].Chemical Engineering Journal, 2010, 162(2):836-843.
[30] Guo S, Zhang G K, Wang J Q.Photo-Fenton degradation of rhodamine B using Fe2O3-kaolin as heterogeneous catalyst:characterization, process optimization and mechanism[J].Journal of Colloid and Interface Science, 2014, 433:1-8.
[31] Niu F X, Fu F, Gao X M, et al.Preparation of Kaolin/Cu2O photocatalyst and its application in the photocatalytic oxidation-extraction desulfurization[J].Advanced Materials Research, 2012, 518:878-883.
[32] Jiang D, Liu Z, Fu L, et al.Efficient nanoclay-based composite photocatalyst:the role of nanoclay in photogenerated charge separation[J].The Journal of Physical Chemistry C, 2018, 122(45):25900-25908.
Options
Outlines

/