Research progress on the thermal transport property of carbon nanotubes and graphene by experiment and molecular dynamics simulation

Expand
  • School of Mechanical Engineering,Beijing Institute of Petrochemical Technology, Beijing 102617

Received date: 2020-04-07

  Revised date: 2021-04-25

  Online published: 2021-08-19

Abstract

As novel highly thermally conductive materials,carbon nanotubes and graphene are of great potential in microprocessor heat dissipation applications.Current research progress on thermal transport properties of carbon nanotubes and graphene were reviewed from the perspective of experimental research and classical molecular dynamics simulation,respectively.And the influence of different factors on the thermal transport of carbon nanotubes and graphene were discussed.Finally,the problem that a clear and unified theory was badly needed to reveal the phonon thermal transport mechanism of carbon nanotubes and graphene was proposed,and the application of ShengBTE calculation method in the studies on the thermal transport of low-dimensional carbon nanomaterials such as graphene was prospected.

Cite this article

Shao Ke, Liu Yuanchao, Zhong Jianbin . Research progress on the thermal transport property of carbon nanotubes and graphene by experiment and molecular dynamics simulation[J]. New Chemical Materials, 2021 , 49(7) : 194 -199 . DOI: 10.19817/j.cnki.issn 1006-3536.2021.07.044

References

[1] Hu M,Keblinski P,Wang J,et al.Interfacial thermal conductance between silicon and a vertical carbon nanotube[J].Journal of Applied Physics,2008,104(8):83503.
[2] Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56.
[3] Novoselov K S.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[4] Kim P,Shi L,Majumdar A,et al.Thermal transport measurements of individual multiwalled nanotubes[J].Physical Review Letters,2001,87(21):215002.
[5] Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
[6] 吴熔琳,邵铮铮,石剑豪,等.3ω方法测量微纳米材料热物性研究进展[J].材料导报,2013,27(S2):91-94.
[7] Hsu I K,Pettes M T,Bushmaker A,et al.Optical absorption and thermal transport of individual suspended carbon nanotube bundles[J].Nano Letters,2009,9(2):590-594.
[8] Fujii M,Zhang X,Xie H,et al.Measuring the thermal conductivity of a single carbon nanotube[J].Physical Review Letters,2005,95(6):65502.
[9] Choi T Y,Poulikakos D,Tharian J,et al.Measurement of thermal conductivity of individual multi-walled carbon nanotubes by the method[J].Applied Physics Letters,2005,87(1):13108.
[10] Choi T Y,Poulikakos D,Tharian J,et al.Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method[J].Nano Letters,2006,6(8):1589-1593.
[11] Pop E,Mann D,Wang Q,et al.Thermal conductance of an individual single-wall carbon nanotube above room temperature[J].Nano Letters,2006,6(1):96-100.
[12] 王照亮,梁金国,唐大伟.单根单壁碳纳米管导热系数随长度变化尺度效应的实验和理论[J].物理学报,2008,57(6):3391-3396.
[13] Li Q,Liu C,Wang X,et al.Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method[J].Nanotechnology,2009,20(14):145702.
[14] Bushmaker A W,Deshpande V V,Bockrath M W,et al.Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes[J].Nano Lett,2007,7(12):3618-3622.
[15] Balandin A A.Thermal properties of graphene and nanostructured carbon materials[J].Nature Materials,2011,10(8):569-581.
[16] Wang Z,Xie R,Bui C T,et al.Thermal transport in suspended and supported few-layer graphene[J].Nano Letters,2011,11(1):113-118.
[17] Seol J H,Jo I,Moore A L,et al.Two-dimensional phonon transport in supported graphene[J].Science,2010,328(5975):213-216.
[18] Ghosh S,Bao W,Nika D L,et al.Dimensional crossover of thermal transport in few-layer graphene[J].Nature Materials,2010,9(7):555-558.
[19] Chen S,Wu Q,Mishra C,et al.Thermal conductivity of isotopically modified graphene[J].Nature Materials,2012,11(3):203-207.
[20] Bae M H,Li Z,Aksamija Z,et al.Ballistic to diffusive crossover of heat flow in graphene ribbons[J].Nature Communications,2013,4:1734.
[21] Lee J U,Yoon D,Kim H,et al.Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy[J].Physical Review B,2011,83(8):081419.
[22] Cai W,Moore A,Chen S,et al.Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition[C].Dallas Texas:APS March Meeting,2011.
[23] Berber S,Kwon Y K,Tománek D.Unusually high thermal conductivity of carbon nanotubes[J].Physical Review Letters,2000,84(20):4613-4616.
[24] Che J,Tahir C,Goddard W A.Thermal conductivity of carbon nanotubes[J].Nanotechnology,2000,11(2):65-69.
[25] Grujicic M,Cao G,Roy W N.Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes[J].Journal of Materials Science,2005,40(8):1943-1952.
[26] Lukes J R,Zhong H.Thermal conductivity of individual single-wall carbon nanotubes[J].Journal of Heat Transfer,2007,129(6):705-716.
[27] Osman M A,Srivastava D.Tempreture dependence of the thermal conductivity of single-wall carbon nanotubes[J].Nanotechnology,2000,12(1):21.
[28] Thomas J A,Iutzi R M,Mcgaughey A J H.Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes[J].Physical Review B,2010,81(4):045413.
[29] Cao A,Qu J.Size dependent thermal conductivity of single-walled carbon nanotubes[J].Journal of Applied Physics,2012,112(1):013503.
[30] Maruyama S.A molecular dynamics simulation of heat conduction in finite length SWNTs[J].Physica B,2002,323(1-4):193-195.
[31] 侯泉文,曹炳阳,过增元.碳纳米管的热导率:从弹道到扩散输运[J].物理学报,2009,58(11):423-428.
[32] 侯泉文,曹炳阳,过增元.碳纳米管热导率的分子动力学研究[J].工程热物理学报,2009,30(7):129-131.
[33] Zhang G,Li B.Thermal conductivity of nanotubes revisited:effects of chirality,isotope impurity,tube length,and temperature[J].The Journal of Chemical Physics,2005,123(11):114714.
[34] Alaghemandi M,Algaer E,Böhm M C,et al.The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations[J].Nanotechnology,2009,20(11):115704.
[35] Kondos N,Yamamoto T,Watanabe K.Molecular-dynamics simulations of thermal transport in carbon nanotubes with structural defects.e-Journal of Surface Science and Nanotechnology,2007,4(0):239-243.
[36] 李威,冯妍卉,张欣欣,等.掺杂、吸附和空位缺陷对碳纳米管导热的影响[J].化工学报,2012,63(S1):75-83.
[37] Hu J,Ruan X,Chen Y P.Thermal conductivity and thermal rectification in graphene nanoribbons:a molecular dynamics study[J].Nano Letters,2009,9(7):2730-2735.
[38] Zhang H,Lee G,Cho K.Thermal transport in graphene and effects of vacancy defects[J].Physical Review B,2011,84(11):44-53.
[39] Wei N,Xu L Q,Wang H Q,et al.Strain engineering of thermal conductivity in graphene sheets and nanoribbons:a demonstration of magic flexibility[J].Nanotechnology,2011,22(10):105705.
[40] Yeo J J,Liu Z,Ng T Y.Comparing the effects of dispersed stone-thrower-wales defects and double vacancies on the thermal conductivity of graphene nanoribbons[J].Nanotechnology,2012,23(38):385702.
[41] Cao Ajing.Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometries[J].Journal of Applied Physics,2012,111(8):83528.
[42] Ng T Y,Yeo J J,Liu Z S.A molecular dynamics study of the thermal conductivity of graphene nanoribbons containing dispersed stone-thrower-wales defects[J].Carbon,2012,50(13):4887-4893.
[43] Yang D,Ma F,Sun Y,et al.Influence of typical defects on thermal conductivity of graphene nanoribbons:an equilibrium molecular dynamics simulation[J].Applied Surface Science,2012,258(24):9926-9931.
[44] Yu C X,Zhang G.Impacts of length and geometry deformation on thermal conductivity of graphene nanoribbons[J].Journal of Applied Physics,2013,113(4):044306.
[45] Xu X,Pereira L F C,Wang Y.Length-dependent thermal conductivity in suspended single-layer graphene[J].Nature Communications,2014,5(1).
[46] Yang L,Chen J,Yang N.Significant reduction of graphene thermal conductivity by phononic crystal structure[J].International Journal of Heat and Mass Transfer,2015,91:428-432.
[47] Cao B,Yao W,Ye Z.Networked nanoconstrictions:an effective route to tuning the thermal transport properties of graphene[J].Carbon,2015,96:711-719.
[48] 邹济杭,叶振强,曹炳阳.势能模型对石墨烯导热性质分子动力学模拟的影响[J].计算物理,2017,34(2):221-229.
[49] Pereira L F C,Donadio D.Divergence of the thermal conductivity in uniaxially strained graphene[J].Physical Review B,2013,87(12):125424.
[50] Mortazavi B,Rajabpour A,Ahzi S,et al.Nitrogen doping and curvature effects on thermal conductivity of graphene:a non-equilibrium molecular dynamics study[J].Solid State Communications,2012,152(4):261-264.
[51] Si C,Li L,Lu G,et al.A comprehensive analysis about thermal conductivity of multi-layer graphene with N-doping,—CH3 group,and single vacancy[J].Journal of Applied Physics,2018,123:135101.
[52] Li W,Carrete J,Katcho N A,et al.ShengBTE:a solver of the boltzmann transport equation for phonons[J].Computer Physics Communications,2014,185(6):1747-1758.
[53] Wang F Q,Yu J,Wang Q,et al.Lattice thermal conductivity of penta-graphene[J].Carbon,2016,105:424-429.
[54] Li C,Debnath B,Tan X.Commensurate lattice constant dependent thermal conductivity of misoriented bilayer graphene[J].Carbon,2018,138:451-457.
[55] Qin G,Qin Z,Wang H,et al.On the diversity in the thermal transport properties of graphene:a first-principles-benchmark study testing different exchange-correlation functionals[J].Computational Materials Science,2018,151:153-159.
Options
Outlines

/