聚乳酸作为一种绿色生物基材料,具有可再生性和生物可降解性。利用熔喷技术制备的聚乳酸非织造材料可将聚乳酸自身性能优势与非织造材料纤维超细、比表面积大、孔隙率高等结构特点结合,在空气过滤领域具有广阔的应用前景。阐述了聚乳酸熔喷非织造材料的制备工艺、性能特点以及在空气过滤领域的研究进展,并对增韧/增强改性、驻极体改性以及功能改性聚乳酸非织造材料的国内外研究情况进行总结。
As a type of green bio-based material,polylactic acid (PLA) is renewable and biodegradable.The efficient and convenient preparation of PLA nonwoven material using melt-blown technology can combine the performance advantages of PLA with the structural characteristics of nonwoven materials such as ultrafine fiber diameter,large specific surface area and high porosity,and has broad application prospects in the field of air filtration.The preparation technology,properties and research progress of PLA melt-blown nonwovens in the field of air filtration were described,and summarized the research situation of toughening/strengthening modification,electret modification and functional modification of PLA nonwovens at home and abroad in recent years.
[1] 孙镜姗,张爽,霍雨心,等.熔喷法非织造布的应用及发展前景[J].辽宁丝绸,2020(2):32-33.
[2] 张煌忠.熔喷非织造材料在空气过滤领域的技术发展研究[J].盐城工学院学报:自然科学版,2015,28(4):56-60.
[3] 葛冬琦,石建英.从化学视角浅谈医用口罩的重复利用[J/OL].大学化学:1-6[2020-06-14].http://kns.cnki.net/kcms/detail/11.1815.O6.20200601.1544.007.html.
[4] 潘晓娣,钱明球,戴钧明.聚乳酸纤维的国内外开发进展[J].合成技术及应用,2017,32(4):32-37.
[5] Yang B,Wang R,Ma H L,et al.Structure mediation and properties of poly(l-lactide)/poly(d-lactide) blend fibers[J].Polymers,2018,10:1353-1363.
[6] 冯刚,裘秀利.聚乳酸的改性与成型加工研究进展[J].塑料工业,2010,38(7):1-4,17.
[7] 刘亚.熔喷/静电纺复合法聚乳酸非织造布的制备及过滤性能研究[D].天津:天津大学,2009.
[8] 彭鹏,张瑜,张伟,等.聚乳酸熔喷非织造材料的研究现状及应用领域[J].产业用纺织品,2014,32(5):1-5.
[9] 孙卜昆,刘淑强.聚乳酸熔融纺丝工艺研究[C].郑州:两岸纺织科技研讨会,2012.
[10] 魏建斐,庞飞.聚乳酸熔喷非织造布的产业化开发[J].合成纤维,2010,39(6):11-14.
[11] 常敬颖,彭鹏,仇何,等.非织造材料在过滤领域的应用[J].合成纤维,2015,44(3):42-45.
[12] 尚婷婷,张昉,张亚群.室内空气污染现状及防治对策[J].广东化工,2019,46(23):99,110.
[13] 殷挺凯.雾霾灾害的成因分析及防治措施[J].经济研究导刊,2013(13):259-260.
[14] 李玉梅.聚乳酸熔喷非织造布的纺制及其结构与性能的研究[D].天津:天津工业大学,2008.
[15] 渠叶红,柯勤飞,靳向煜,等.熔喷聚乳酸非织造材料工艺与过滤性能研究[J].产业用纺织品,2005,23(5):19-22.
[16] 张琦.驻极体聚乳酸熔喷非织造材料的制备及性能研究[D].杭州:浙江理工大学,2012.
[17] Feng J Y.Preparation and properties of poly(lacticacid) fiber meltblown non-woven disordered mats[J].Materials Letters,2017,189:180-183.
[18] 常敬颖,李素英,张旭,等.可降解聚乳酸熔喷超细纤维空气滤材的制备[J].纺织导报,2016(6):96-97.
[19] 张昌辉,刘冬梅,王佳.脂肪族聚酯降解材料的研究进展[J].塑料工业,2010,38(11):1-3,12.
[20] 孟兵,郑金辉,孙建丽.不同分子量PCL增韧PLA的结构与性能[J].工程塑料应用,2016,44(5):107-111.
[21] 曹勇民.PLA-PCL-PLA对熔喷用PLA/PCL共混材料相容性与可纺性影响的研究[D].杭州:浙江理工大学,2016.
[22] Zhu F C,Yu B,Su J J,et al.Study on PLA/PA11 bio-based toughening melt-blown nonwovens[J].Autex Research Journal,2020,20(1):24-31.
[23] Zhu F C,Su J J,Wang M J,et al.Study on dual-monomer melt-grafted poly(lactic acid) compatibilized poly(lactic acid)/polyamide 11 blends and toughened melt-blown nonwovens[J].Journal of Industrial Textiles,2020,49(6):1-25.
[24] 朱斐超.尼龙11/埃洛石纳米管复合聚乳酸材料及其增强增韧熔喷非织造材料的研究[D].杭州:浙江理工大学,2019.
[25] 夏忠福.聚合物驻极体气体和空气过滤材料在环境净化工程中的研究进展[J].材料导报,2011,15(8):57-58.
[26] 任煜,李猛,尤祥银.驻极处理对聚乳酸熔喷材料性能的影响[J].纺织学报,2015,36(9):13-17.
[27] Zhang J,Chen G,Bhat G S,et al.Electret characteristics of melt-blown polylactic acid fabrics for air filtration application[J].Journal of Applied Polymer Science,2019,137(4):48309-48314.
[28] 于斌,韩建,余鹏程,等.驻极体对熔喷用PLA材料热性能及可纺性的影响[J].纺织学报,2013,34(2):82-85.
[29] 蔡诚,唐国翌,宋国林,等.纳米SiO2驻极体/聚乳酸复合熔喷非织造材料的制备及性能[J].复合材料学报,2017,34(3):486-493.
[30] 黄海超,宋国林,唐国翌,等.驻极体-增塑剂复合改性聚乳酸熔喷非织造材料的制备及性能[J].复合材料学报,2019,36(3):563-571.
[31] Yu B,Wang M J,Sun H,et al.Preparation and properties of poly(lactic acid)/magnetic Fe3O4 composites and nonwovens[J].RSC Advances,2017,7:41929-41935.
[32] 黄翔,王与娟,樊丽娟,等.新型功能性空气过滤材料研究进展[J].暖通空调,2009,39(1):49-52.
[33] Latwińska M,Sójka-Ledakowicz J,Chruściel J,et al.PLA and PP composite nonwoven with antimicrobial activity for filtration applications[J].International Journal of Polymer Science,2016,2013:1-9.
[34] Kudzin M H,Mrozińska Z.Biofunctionalization of textile materials.2.antimicrobial modification of poly(lactide)(PLA) nonwoven fabrics by fosfomycin[J].Polymers,2020,12(4):768-783.