新材料与新技术

具有介孔包覆层Co3O4/LiNi0.6Co0.2Mn0.2O2复合正极材料的制备

展开
  • 1.南京理工大学化工学院,南京210000;
    2.功能材料和软化学重点实验室,南京210000
侯晶晶(1993-),女,硕士,主要从事锂离子电池研究,E-mail:jingjinghou111@sina.com。

网络出版日期: 2020-10-20

基金资助

国家自然科学基金(51472119和21474053)

Preparation of Co3O4/LiNi0.6Co0.2Mn0.2O2 composite anode material with mesoporous coating

Expand
  • 1.School of Chemistry Engineering,Nanjing University of Science and Technology,Nanjing 210000;
    2.Key Laboratory of Functional Materials and Soft Chemistry,Nanjing 210000

Online published: 2020-10-20

摘要

以水和乙二醇的混合溶液作为溶剂,草酸作为络合剂和沉淀剂,采用溶剂热法制备出粒径为300~500nm的块状LiNi0.6Co0.2Mn0.2O2(NCM622)材料。通过湿法包覆,在NCM622颗粒表面形成一层带有许多介孔的Co3O4包覆层。通过X射线衍射仪、透射电子显微镜、恒电流充放电技术、循环伏安法以及交流阻抗谱等手段对材料的结构、形貌和电化学性能(放电性能、循环性能、倍率性能和材料内阻)进行表征。结果表明:经过Co3O4包覆后的电极材料在电化学性能方面都有一定改善。尤其是3% Co3O4包覆的材料,电化学性能最为优异。在0.1C倍率条件下首次放电比容量达到191mAh/g,在0.2C下循环100圈,材料的容量保持率从最初的61.2%提高到87%,且包覆后的阻抗也明显降低。

本文引用格式

侯晶晶, 温乐, 赵淑宁, 卑凤利 . 具有介孔包覆层Co3O4/LiNi0.6Co0.2Mn0.2O2复合正极材料的制备[J]. 化工新型材料, 2020 , 48(10) : 78 -82 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.10.017

Abstract

Using mixed solution of water and ethylene glycol as solvent,oxalic acid as complexing agent and precipitant,granule-like LiNi0.6Co0.2Mn0.2O2(NCM622) nanoparticles with a particle size of 300~500 nm was prepared by solvothermal method.Co3O4 coating with many mesopores was formed on the surface of the NCM622 particles by wet coating.The morphology and electrochemical properties (discharge performance,cycle performance,multiplier performance and material internal resistance) of the material were characterized by X-ray diffractometer,transmission electron microscope,constant-current charge-discharge technology,cyclic voltammetry(CV) and electrochemical impedance spectroscopy (EIS).The results shown that the electrode material coated by Co3O4 had some improvement in electrochemical performance.In particular,the material coated with 3% Co3O4 had the best electrochemical performance.At the 0.1C rate,the first discharge specific capacity reached 191mAh/g,and the cycle was maintained at 0.2C for 100 cycles.The capacity retention rate of the material increased from 61.2% to 87%,and the impedance after coating also decreased significantly.

参考文献

[1]Tarascon J M, Armand M.Issues and challenges facing rechargeable lithium batteries[J].Materials for Sustainable Energy, 2010, 42:171-179.
[2]Ohzuku T, Ueda A, Kouguchi M.Synthesis and characterization of LiAl 1/4Ni 3/4O 2(R3m) for lithium-ion (shuttlecock) batteries[J].Journal of the Electrochemical Society, 1995, 142:4033-4039.
[3]Scrosati B, Garche J.Lithium batteries:status, prospects and future[J].Journal of Power Sources, 2010, 195:2419-2430.
[4]Kim J, Hong Y, Ryu K S, et al.Washing effect of a LiNi 0.83Co 0.15Al 0.02O 2 cathode in water[J].Electrochemical and Solid-State Letters, 2006, 9:A19-A23.
[5]Robert R, Bunzli C, Berg E J, et al.Activation mechanism of LiNi 0.80Co 0.15 Al 0.05O 2:surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X-ray diffraction analyses[J].Chemistry of Materials, 2015, 27:526-536.
[6]Wu F, Borodin O, Yushin G.In situ surface protection for enhancing stability and performance of conversion-type cathodes[J].MRS Energy Sustain, 2007, 4:E9.
[7]Geder J, Song J H, Kang S H, et al.Thermal stability of lithium-rich manganese-based cathode[J].Solid State Ionics, 2004, 268:242-246.
[8]Kim Y.Mechanism of gas evolution from the cathode of lithium-ion batteries at the initial stage of high-temperature storage[J].Journal of Materials Science, 2013, 48:8547-8551.
[9]Wu F, Tian J, Su Y, et al.Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials[J].ACS Appl Mater Interfaces, 2015, 7(14):7702-7708.
[10]孙立国.高镍三元锂电正极材料的掺杂改性研究进展[J].广东化工, 2018, 45(3):114-115.
[11]张贤惠.高容量Li-Ni-Co-Mn氧化物正极材料的合成及其动力学研究[D].宁波:中国科学院大学(中国科学院宁波材料技术与工程研究所), 2017.
[12]Zhang C, Qi J X, Zhao H, et al.Facile synthesis silkworm-like Ni-rich layered LiNi 0.8Co 0.1Mn 0.1O 2 cathode material for lithium-ion batteries[J].Materials Letters, 2017, 201:1-4.
[13] Zhou L Z, Xu Q J, Shuang M, et al.Novel solid-state preparation and electrochemical properties of Li1.13[Ni0.2Co0.2Mn0.47]O2 material with a high capacity by acetate precursor for Li-ion batteries[J].Solid State Ionics, 2013, 249-250:134-138.
[14] Lu H Q, Zhou H T, Svensson A M, et al.High capacity Li[Ni0.8Co0.1Mn0.1]O2 synthesized by sol-gel and co-precipitation methods as cathode materials for lithium-ion batteries[J].Solid State Ionics, 2013, 249-250:105-111.
[15] Cho W K, Sang M, Song J H, et al.Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating[J].Journal of Power Sources, 2015, 285:45-50.
[16] Meng K, Wang Z X, Guo H J, et al.Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3[J].Electrochimica Acta, 2016, 211:822-831.
Options
文章导航

/