科学研究

暴露{101}晶面的锐钛矿型TiO2光热协同催化降解苯的性能研究

展开
  • 1.苏州科技大学土木学院,苏州215009;
    2.武汉理工大学硅酸盐建筑材料国家重点实验室,武汉430070;
    3.长江科学院工程质量检测中心,武汉430010
任璐(1988-),女,博士,讲师,主要从事环境净化材料研究。

收稿日期: 2020-01-02

  网络出版日期: 2022-11-01

基金资助

国家自然科学基金(51902219);江苏省自然科学基金(BK20190949)

Photothermocatalysis of anatase TiO2 with exposed {101} facet for benzene degradation

Expand
  • 1. School of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215009;
    2. State Key Laboratory of Silicate Materials for Architectures,Wuhan University of Technology,Wuhan 430070;
    3. Engineering Quality Inspection Center,Yangtze River Scientific Research Institute,Wuhan 430010

Received date: 2020-01-02

  Online published: 2022-11-01

摘要

讨论了温度对暴露{101}晶面锐钛矿型TiO2光催化性能的影响,测定了热催化性能,对比了锐钛矿型TiO2{101}晶面和{001}晶面的光催化和光热协同催化性能。结果表明:暴露{101}晶面的锐钛矿型TiO2随着反应温度的升高,光催化降解苯的效率越高。光催化反应和热催化反应之间存在着协同效应。光热协同催化降解苯的CO2本征生成速率较光催化提升了7.19倍。锐钛矿型TiO2{101}晶面比{001}晶面具有更高的光催化降解苯的活性,较低的光热协同活性。

关键词: TiO2; 锐钛矿; 晶面; 光热协同;

本文引用格式

任璐, 毛明杨, 蒋科 . 暴露{101}晶面的锐钛矿型TiO2光热协同催化降解苯的性能研究[J]. 化工新型材料, 2020 , 48(7) : 196 -200 . DOI: 10.19817/j.cnki.issn 1006-3536.2020.07.045

Abstract

Anatase TiO2 with exposed {101} facets was discussed in the influence of temperature to the photocatalysis.The thermocatalysis for benzene degradation was tested.The photocatalysis and photothermocatalysis were contrasted between anatase TiO2 with exposed {101} facets and {001} facets.The results indicated that with the increase of the temperature,the photocatalysis for benzene degradation improved.There was synergetic effect between photocatalysis and thermocatalysis.The CO2 specific production rate of photothermocatalysis for benzene degradation increased 7.19 times higher than that of photocatalysis.Anatase TiO2 with exposed {101} facets showed higher photocatalytic activity and lower photothermocatalytic activity for benzene degradation than anatase TiO2 with exposed {001} facets.

参考文献

[1] 唐其文,吴艳.挥发性有机物VOCs监测方法及治理[J].环境与发展,2018,30(6):159-161.
[2] Mamaghani A H,Haghighat F,Lee C S.Photocatalytic oxidation technology for indoor environment air purification:the state-of-the-art[J].Applied Catalysis B-Environmental,2017,203:247-269.
[3] Shu Y J,Ji J,Xu Y,et al.Promotional role of Mn doping on catalytic oxidation of VOCs over mesoporous TiO2 under vacuum ultraviolet (VUV) irradiation[J].Applied Catalysis B-Environmental,2018,220:78-87.
[4] Jin Z,Wang L,Hu Q X,et al.Hydrophobic zeolite containing titania particles as wettability-selective catalyst for formaldehyde removal[J].ACS Catalysis,2018,8(6):5250-5254.
[5] Shayegan Z,Lee C S,Haghighat F,TiO2 photocatalyst for removal of volatile organic compounds in gas phase-a review[J].Chemical Engineering Journal,2018,334:2408-2439.
[6] Ren L,Li Y Z,Mao M Y,et al.Significant improvement in photocatalytic activity by forming homojunction between anatase TiO2 nanosheets and anatase TiO2 nanoparticle[J].Appllied Surface Science,2019,490:283-292.
[7] Weon S,Choi W.TiO2 nanotubes with open channels as deactivation-resistant photocatalyst for the degradation of volatile organic compounds[J].Environmental Science & Technology,2016,50(5):2556-2563.
[8] Lu Z,Zeng L,Song W,et al.In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer[J].Applied Catalysis B-Environmental,2017,202:489-499.
[9] Zhang L,Qin M,Yu W,et al.Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light[J].Journal Electrochemical Society,2017,164(14):1086-1090.
[10] Alami W E,Sousa D G,Gonzalez J M D,et al.TiO2 and F-TiO2 photocatalytic deactivation in gas phase[J].Chemical Physics Letters,2017,684:164-170.
[11] Haselmann G M,Eder D.Bimodal mesoporous TiO2 supported Pt,Pd and Ru catalysts and their catalytic performance and deactivation mechanism for catalytic combustion of Dichloromethane (CH2Cl2)[J].ACS Catalysis,2017,7(7):4668-4675.
[12] Lyu J Z,Shao J W,Wang Y H,et al.Construction of a porous core-shell homojunction for the photocatalytic degradation of antibiotics[J].Chemical Engineering Journal,2019,358:614-620.
[13] Chen X B,Liu L,Yu P Y,et al.Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J].Science,2011,331(6018):746-750.
[14] Ren L,Mao M Y,Li Y Z,et al.Novel photothermocatalytic synergetic effect leads to high catalytic activity and excellent durability of anatase TiO2 nanosheets with dominant {001} facets for benzene abatement[J].Applied Catalysis B-Environmental,2016,198:303-310.
[15] Li Y Z,Huang J C,Peng T,et al.Photothermocatalytic synergetic effect leads to high efficient detoxification of benzene on TiO2 and Pt/TiO2 nanocomposite[J].Chem Cat Chem,2010,2(9):1082-1087.
[16] Kong M,Li Y,Chen X,et al.Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency[J].Journal of the American Chemical Society,2011,133(41):16414-16417.
[17] Ren L,Li Y Z,Hou J T,et al.The pivotal effect of the interaction between reactant and anatase TiO2 nanosheets with exposed {001} facets on photocatalysis for the photocatalytic purification of VOCs[J].Applied Catalysis B-Environmental,2016,181:625-634.
[18] Yang H G,Sun C H,Qiao S Z,et al.Anatase TiO2 single crystals with a large percentage of reactive facets[J].Nature,2008,453:638-642.
[19] Tong H F,Zhou Y Y,Chang G,et al.Anatase TiO2 single crystals with dominant {001} facets:synthesis,shape-control mechanism and photocatalytic activity[J].Appllied Surface Science,2018,444:267-275.
[20] Yu J G,Low J X,Xiao W,et al.Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets[J].Journal of the American Chemical Society,2014,136:8839-8842.
文章导航

/